MacCready from pre-K to PhD

Pasco 2017 John Cochrane

How to fly faster & further

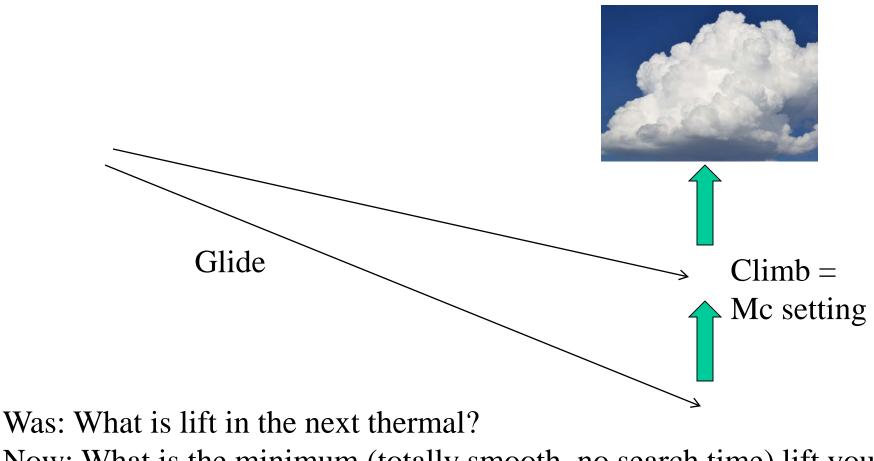
1) Climb better 2) Climb better 3) Climb better

Avoid bad lift.

- 1. Weak lift hurts more than strong lift helps.
- 2. Average of 2 kts and 10 kts is 3.33 kts not 6 kts:

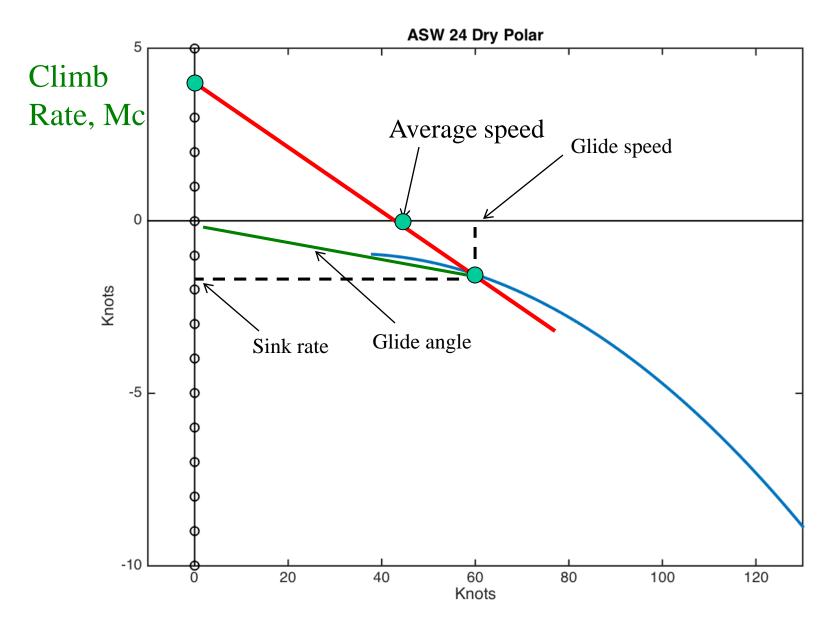
1000' @ 2 kts = 5 min. 1000' @ 10 kts = 1 min. 2000'/6 min = 3.33 knots.

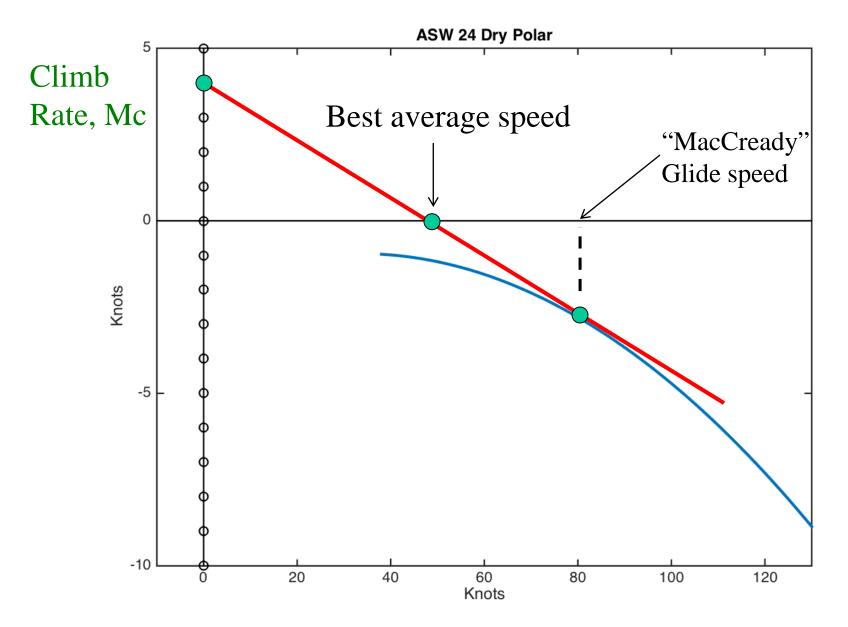
3. 2 x 4 knots is better! "Little harm ever came from climbing in smooth 5 kts lift."

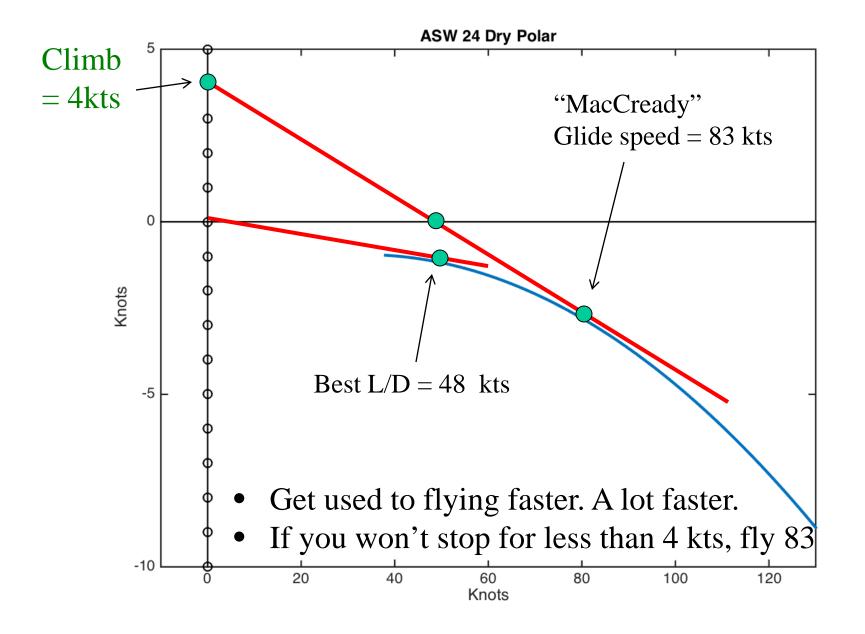

Leave bad lift.

- 1. Set a value (Mc) 2-3 knots. If averager < Mc you leave. *Now. Yes, Now!*
- 2. If lift is not increasing at 60deg off course, do not continue turn.
- 3. Common errors. Searching, going back.
- 4. Most brilliant recentering is actually leaving in disgust, blundering in to the core.
- 5. Psychology:
 - a. Confidence—there will be lift ahead and you will find it. (Weather, experience)
 - b. Why am I scared? How often have I actually landed from this situation?

More


Cruise faster; make better strategic decisions, (generalized) "MacCready theory." All decisions come down to altitude vs. time.


MacCready 101 -- Scenario



Now: What is the minimum (totally smooth, no search time) lift you would stop and take right now?

Both: How fast to fly?

Numbers: Target Cruise Speeds

Dry ASW 24

Basic MacCready speeds and average speeds

Мс	Glid	е	D/L	- Avg	Speed-	
(kts)	(kts)	L/D	ft/mi	(mp	h) (kph)	
0	47	42	125	0	0	-Almost never used
1	58	39	134	27	44	-Desperate
2	68	35	152	39	63	-Cautious
3	76	30	173	48	77	-Doing fine everyday setting
4	83	27	195	54	87	-Ripping, confident
5	90	24	216	60	96	-Not used except heavy sink, final glide,
6	97	22	237	65	104	wave, ridge, Tonopah, or other
7	102	20	258	69	111	special cirucumstance.
8	108	19	278	73	117	(especially standard class)

•Cruise faster!

•But not that fast! Why do we use Mc 3-4 glides in 6 knot lift? Coming.

•Average speeds 70+ come from gliding in lift, not booming thermals and mad glides

•Your thermal, not 7Vs thermal! If you're not as good at climbing, fly slower.

Dry ASG 29

Basic MacCready speeds and average speeds

				-		-	-	
		Avg Spd		D/L			Glide	Mc
Mc Settng is	(kph)	(mph)	(kts)	ft/mi	L/D	km/h	(kts)	(kts)
roughly same	0	0	0	103	51	97	53	0
for different	50	31	27	109	48	114	62	1
gliders/water.	71	44	38	124	43	129	69	2
Speed is not!	84	52	46	141	37	142	76	3
1	94	59	51	160	33	154	83	4
	103	64	55	179	30	165	89	5
Know speed	110	68	59	198	27	175	95	б
for block speed	116	72	63	217	24	185	100	7
flying!	122	76	66	236	22	194	105	8
	128	79	69	255	21	203	110	9

Wet ASG 29

Basic MacCready speeds and average speeds ---| Mс Glide D/L --- Avg Spd (kts) km/h L/D ft/mi (kts) (mph) (kph) (kts) б

Seeyou: virtually all pilots at western 18m nats fly 95-105

Avg: important to glide in lift!

Don't forget to speed up in sink! Don't slow too much in lift!

Dry	ASW	27
-----	-----	----

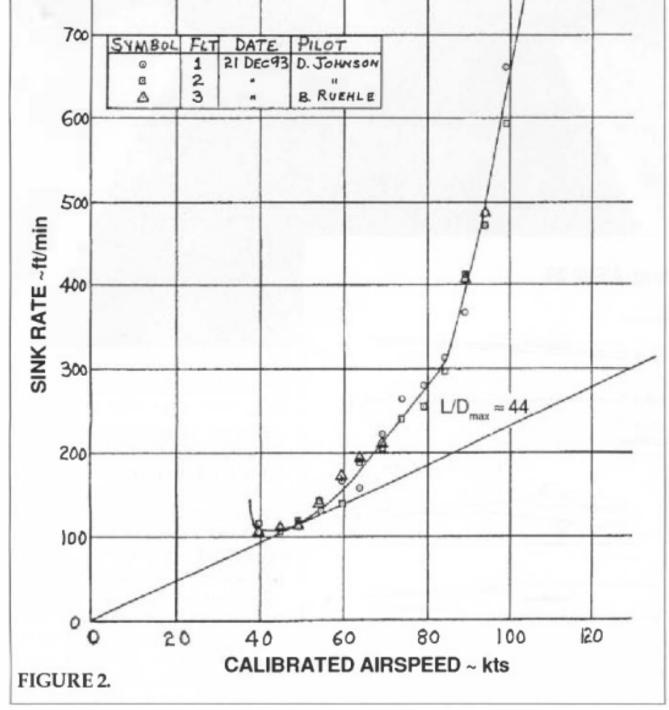
Basic MacCready speeds and average speeds

	-	-		-			
Mc	Glide			D/L		Avg Spd	
(kts)	(kts)	km/h	L/D	ft/mi	(kts)	(mph)	(kph)
0	55	103	48	110	0	0	0
1	65	120	46	116	27	31	49
2	73	135	41	129	38	44	71
3	80	148	36	146	46	53	85
4	87	160	32	163	52	60	96
5	93	172	29	182	57	65	105
б	99	183	26	200	61	70	113
7	104	193	24	218	64	74	119
8	109	202	22	236	68	78	126
9	114	211	21	254	71	82	131

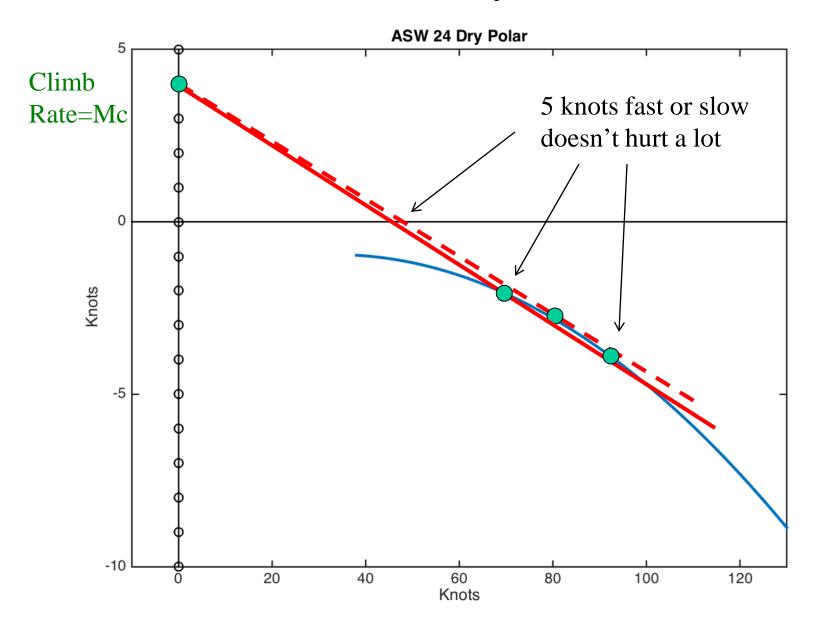
Wet ASW 27

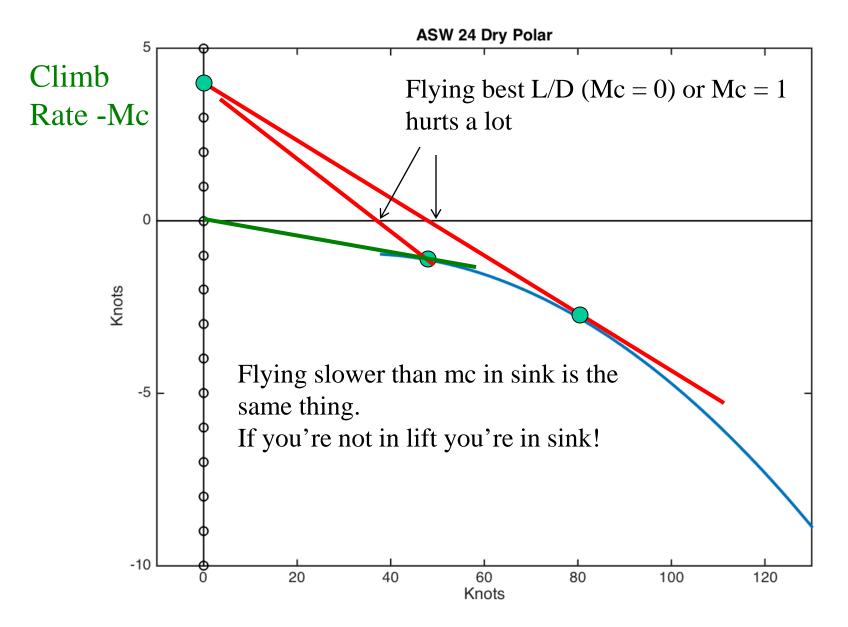
Basic MacCready speeds and average speeds

	-	–	5	<u> </u>			
Mc	Glide			D/L		Avg Spd	
(kts)	(kts)	km/h	L/D	ft/mi	(kts)	(mph)	(kph)
0	67	125	47	112	0	0	0
1	79	146	45	117	29	33	53
2	89	164	41	128	43	49	79
3	97	180	37	141	52	60	96
4	105	195	34	156	59	68	110
5	113	209	31	171	65	75	121
б	120	222	28	186	70	81	130
7	127	235	26	201	75	86	139
8	133	246	24	216	79	91	147
9	139	258	23	230	83	96	154

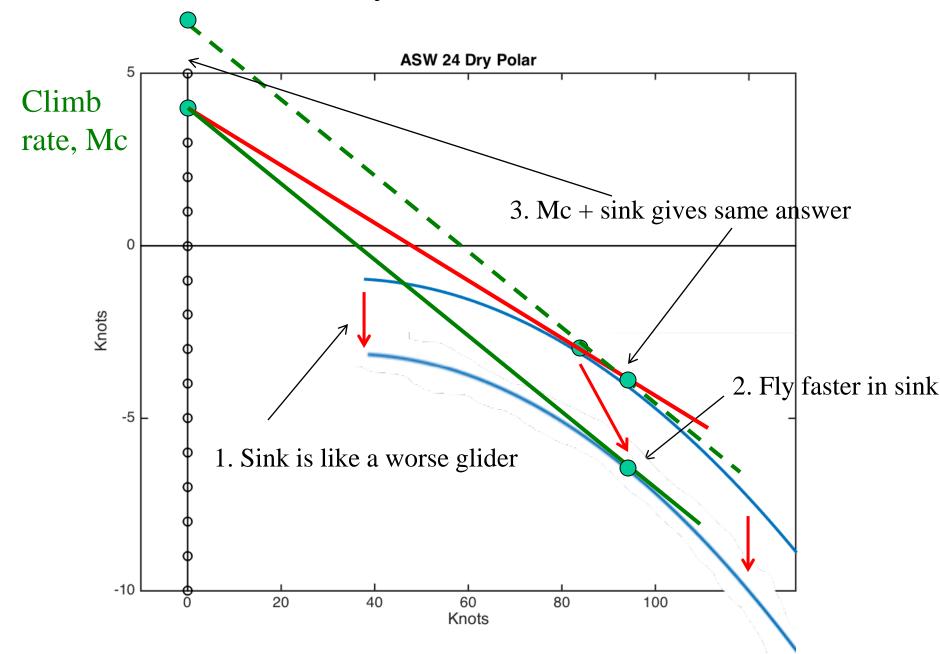

Faster than 29!

Dry Std Cirrus

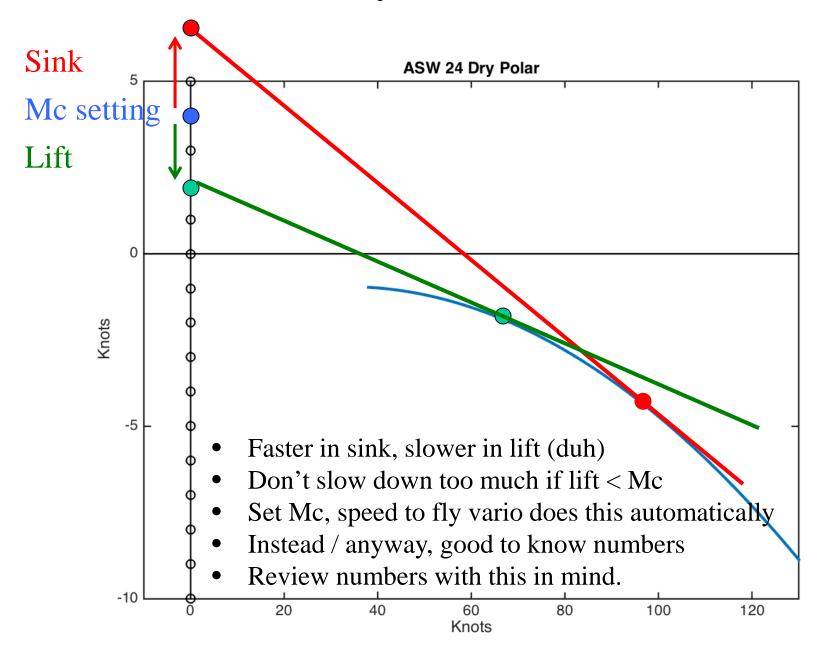

Basic MacCready speeds and average speeds


Mc	Glide	_		D/L	2	Avg Spd	
(kts)	(kts)	km/h	L/D	ft/mi	(kts)	(mph)	(kph)
0	51	95	37	145	0	0	0
1	58	108	35	150	22	25	41
2	64	119	32	163	32	37	60
3	70	129	30	179	39	45	72
4	75	138	27	197	44	51	82
5	79	147	24	216	48	55	89
6	84	155	22	235	52	59	96
7	88	163	21	255	55	63	102
8	92	171	19	275	58	66	107
9	96	178	18	294	60	69	112

Older gliders fly a lot slower!



Non quadratic polars. Mc > 2 Fly standard class at 60 or 80. Bottom surface separation



MacCready 101–Lift and Sink

MacCready 201–Lift and Sink

Numbers: Lift/sink

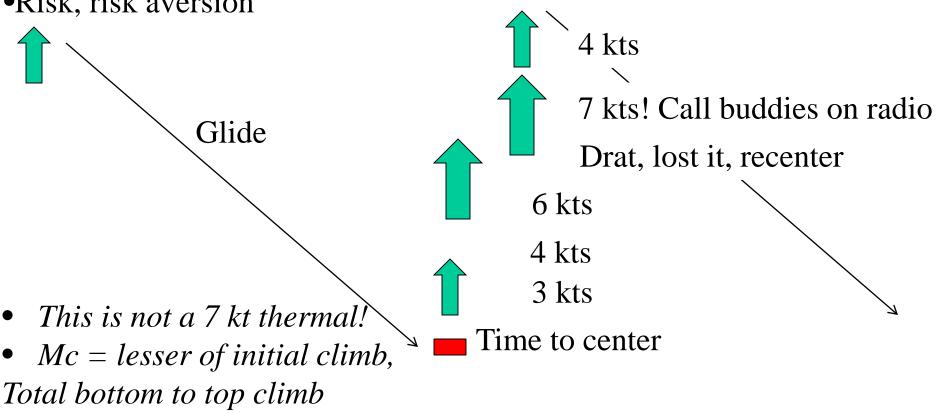
Dry ASW 24

Basic MacCready speeds and average speeds

Mc (kts)	Glid (kts)		•	U	Speed- n) (kph)
0	47	42	125	0	0	-Cautious + 2 kts lift
1	58	39	134	27	44	
2	68	35	152	39	63	-Cautious
3	76	30	173	48	77	
4	83	27	195	54	87	-Cautious + 2 kts netto sink = 4 kts vario sink
5	90	24	216	60	96	
6	97	22	237	65	104	 Cautious = 4 kts (wave) sink
7	102	20	258	69	111	
8	108	19	278	73	117	

Don't fly too slow in persistent sink!

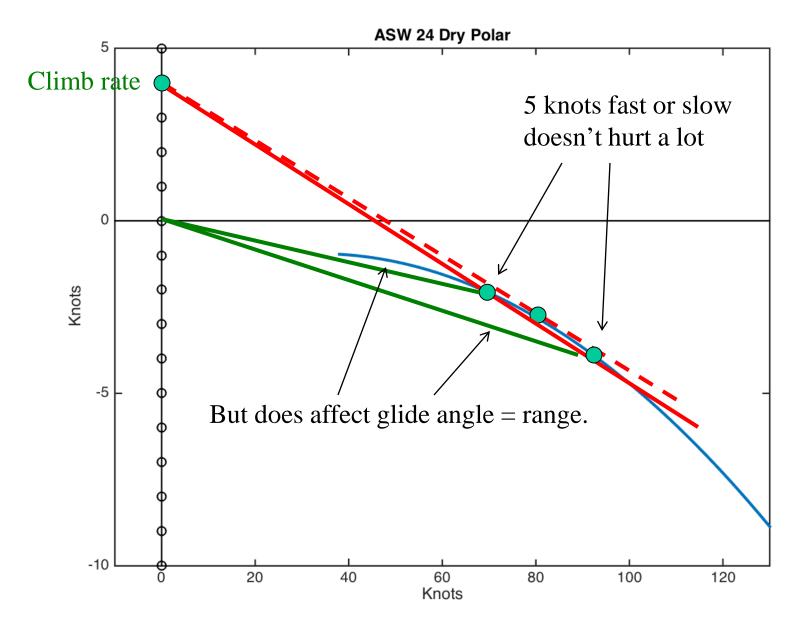
Practical dolphin / speed flying


- Block speeds don't chase vario.
- What's ahead matters slow for smooth lift, big clouds; speed up in consistent/ predictable sink.
- *Change* in vario/g matters. Pull while lift increasing, push when lift decreasing.
- No big zoomies, pushovers (safety!)
- In strong persistent lift, slow to < min sink, flaps, S turns. But be ready to push!
- Don't get caught too slow wishing for it. Slow in sink is worse than fast in lift.
- Leave thermals gently, following clouds, wind, gliders (sorry, Moffat.)
- Course deviations to fly in lift are more important than speed changes. (20 degrees = 6% longer, 30 degrees = 13% longer)
- *Never* cruise best L/D! If you're not in lift, you're in sink!
- (Exception: desperate glide in absolutely smooth no / sink air)

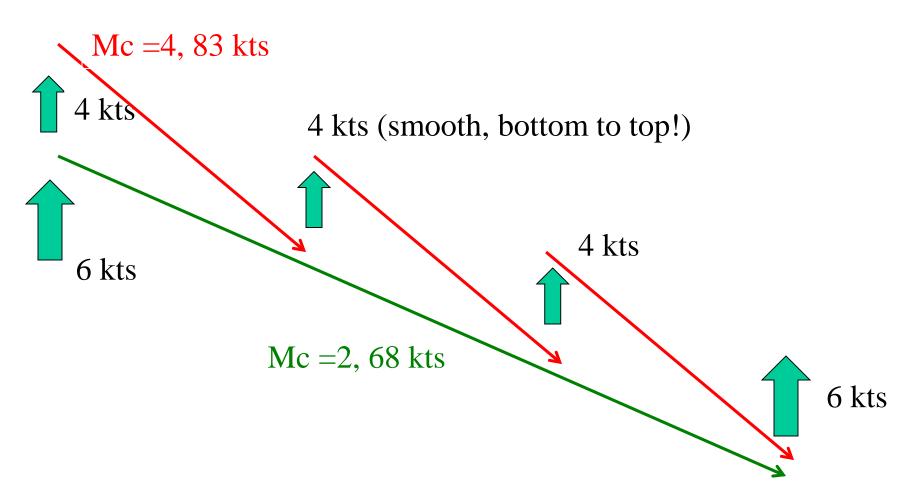
MacCready 301. Lower Mc settings.

Why do we use Mc 3-4 in "6-8 kt lift?"

- •*Centering time*
- •Thermals vary with altitude
- •Range / altitude bands
- •Feel the air
- •Risk, risk aversion



Mc 301. Lower Mc Settings: Centering time.

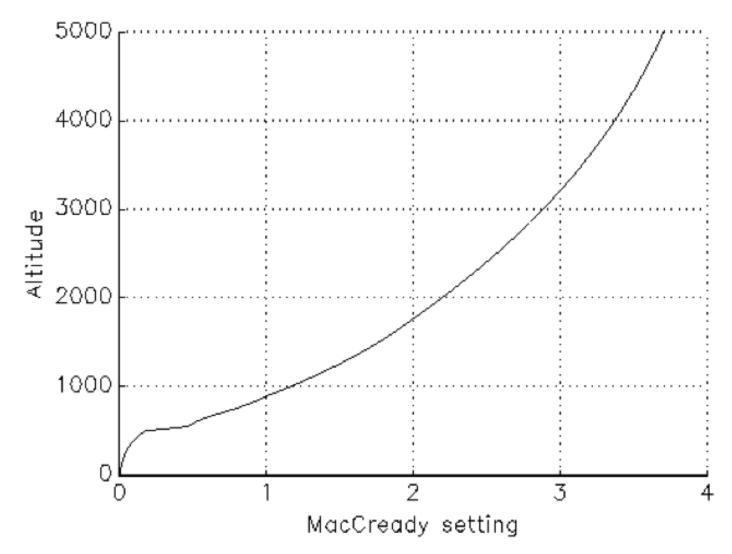

Height		Lift			
Gain	2.00	4.00	6.00	8.00	
	cente	ering time	= 0.50		
1000	1.82	3.33	4.62	5.71	
2000	1.90	3.64	5.22	6.67	
5000	1.96	3.85	5.66	7.41	
	cente	ring time =	= 1.00 (3 d	circles)	
1000	1.67	2.86	3.75	4.44	
2000	1.82	3.33	4.62	5.71	
5000	1.92	3.70	5.36	6.90	
	cente	ering time	= 2.00		
1000	1.43	2.22	2.73	3.08	
2000	1.67	2.86	3.75	4.44	
5000	1.85	3.45	4.84	6.06	

- Again, "8 kts" is not 8 kts! Lower Mc settings *is* Mc theory.
- Worse for strong lift & short climbs
- "Don't climb unless 2000'gain"
 "Long glide" -- Unless smooth.
- Smooth more important than strong for stop to climb decision.
- Worth staying in thermals past peak if still smooth. You paid entrance fee.
- Instruments: Bottom to now averager! (See you trace) Compare 20 sec / bottom to now.

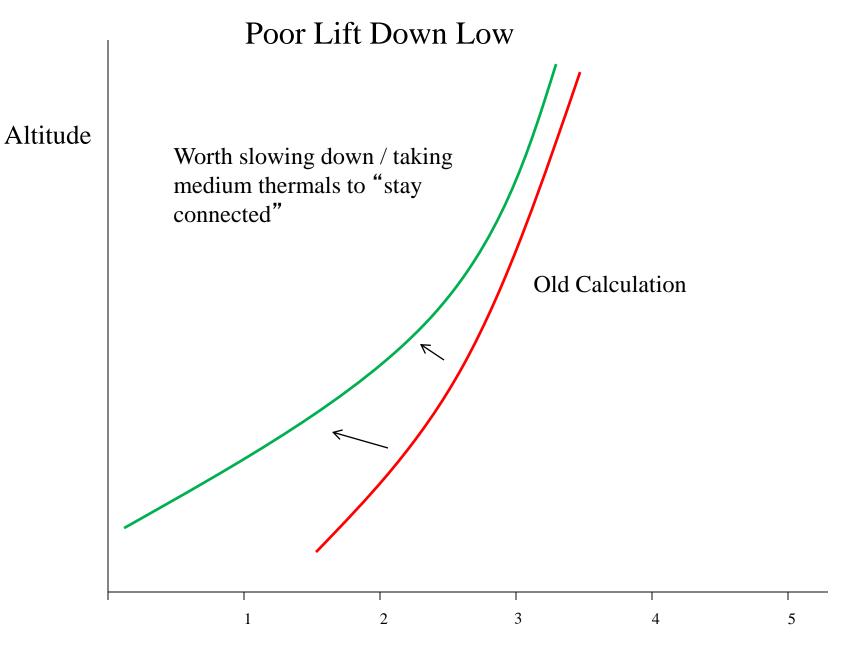
MacCready 301: Range

A Common Range Fallacy

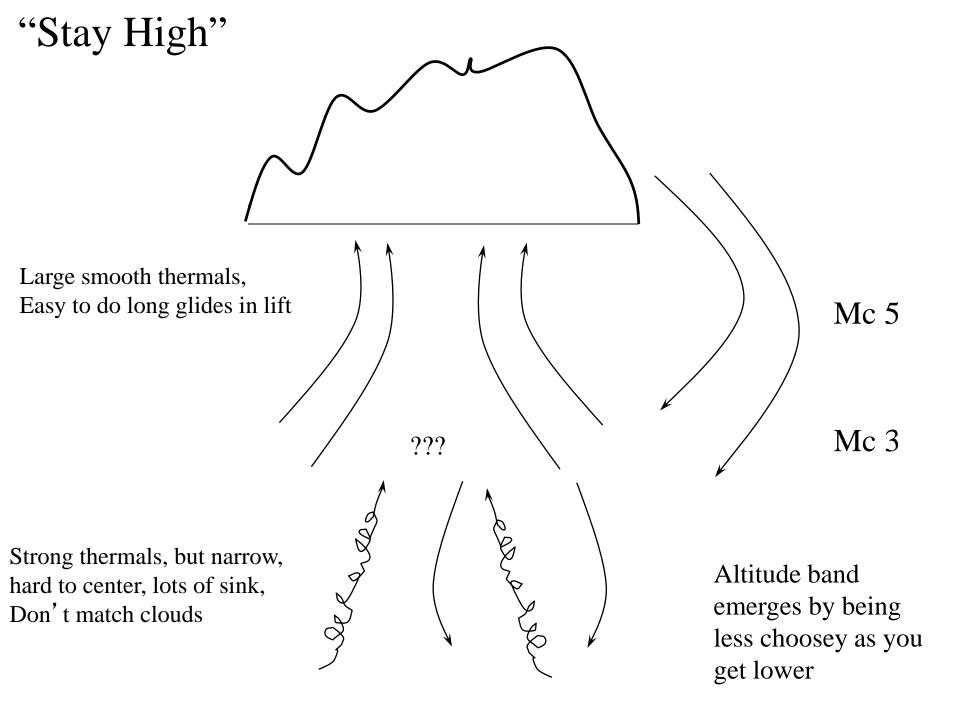
Take smooth, or bottom to top lift greater than your glide Mc setting.

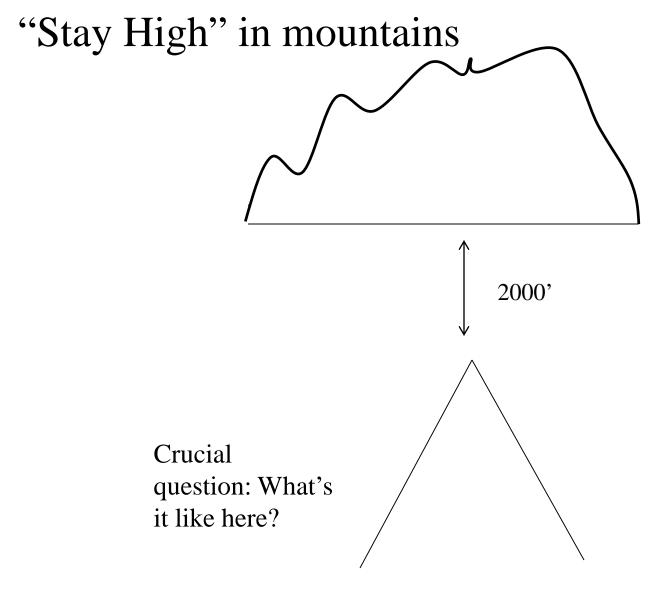

Full optimum: A simple calculation

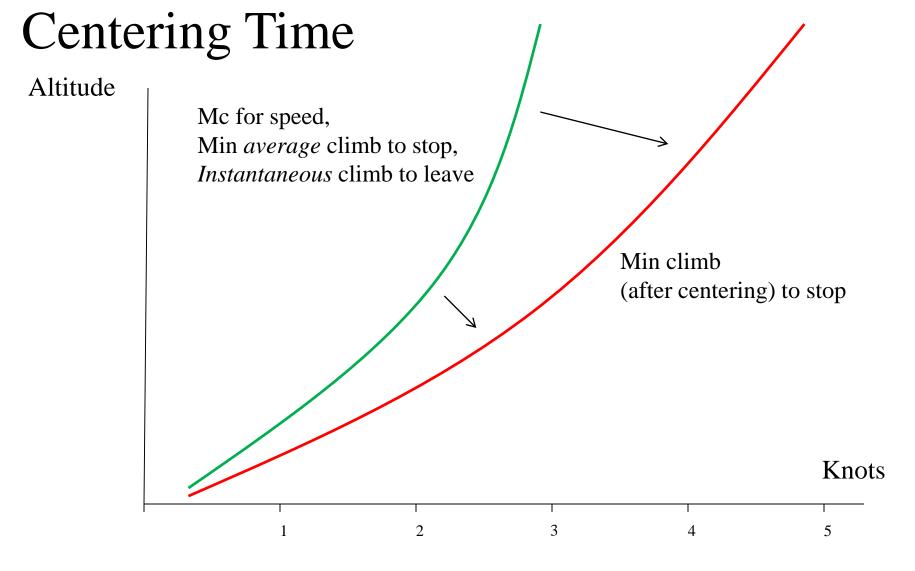
- Math: find the best speed, but add :
 - a. Altitude > 0,
 - b. Landout valued by US rules.
 - c. Thermals are random:

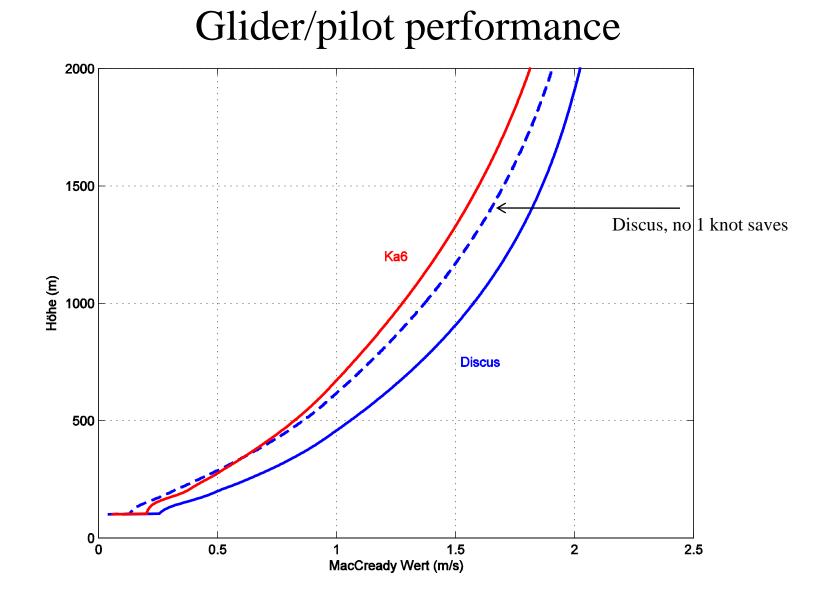

Thermal	Miles					
Strength	1	5	10			
1	20	90	99			
2	10	61	84			
4	5	30	52			
6	2	10	18			

Probability (%) of finding a thermal at least this strong


(Discus flying in Northern Illinois on a good day)




- This is the "weakest thermal you'd take = lift to leave."
- Steadily change setting with height. Stairstep saves.
- "4-6 knot day". Settings are a lot lower! "Don't fly Mc?"
- A flexible "height band" emerges.

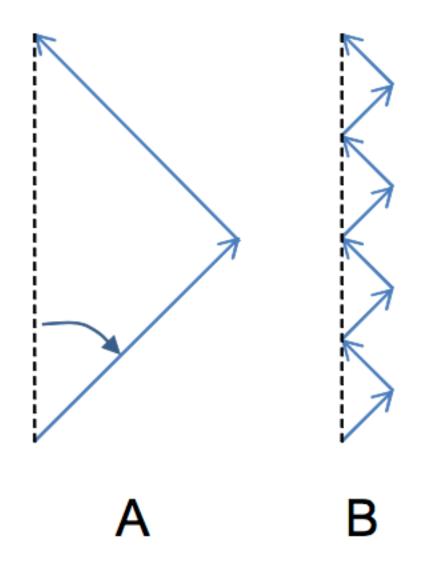

Knots

Stay in weaker lift than you'd stop for, cruise at "stay" value
How long it will take to center? Decides if you stop!

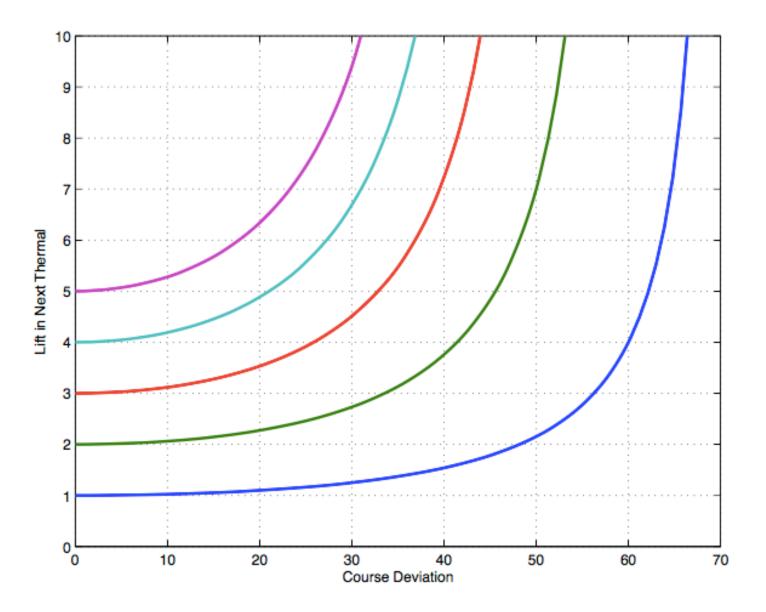
Slower pilots, gliders need to fly more conservatively.
Less chance of 1 knot saves = fly a discus like a Ka6

Higher/lower Mc values

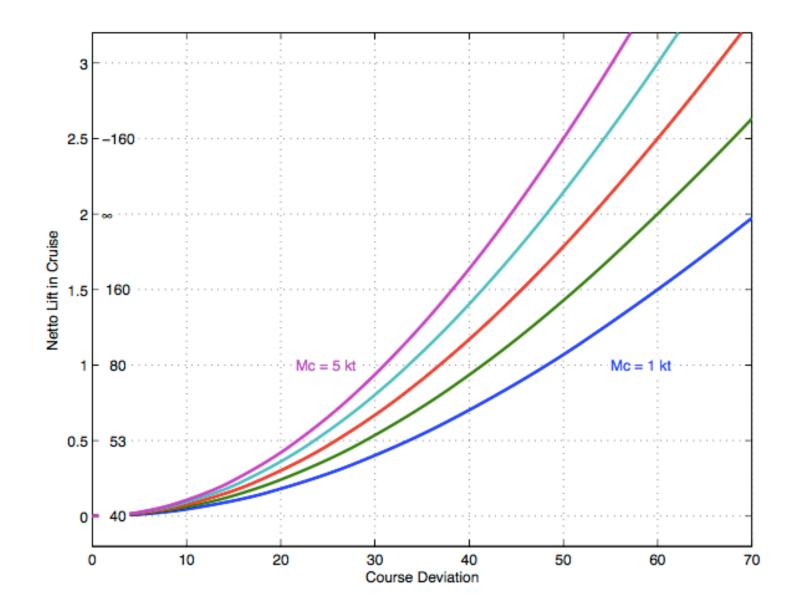
Lower:


- •Centering time
- •Initial/final climb. Mc = min(bottom to top, initial)
- •Feel the air.
- •Risk aversion. Greater landout costs. Harder low saves.
- •Mc now = expected Mc ahead. But expected min / foot. Average of
- 1, 3, 5 is 1.6 lower settings! (average of 1/1, 1/3, 1/5 is 1/1.6)

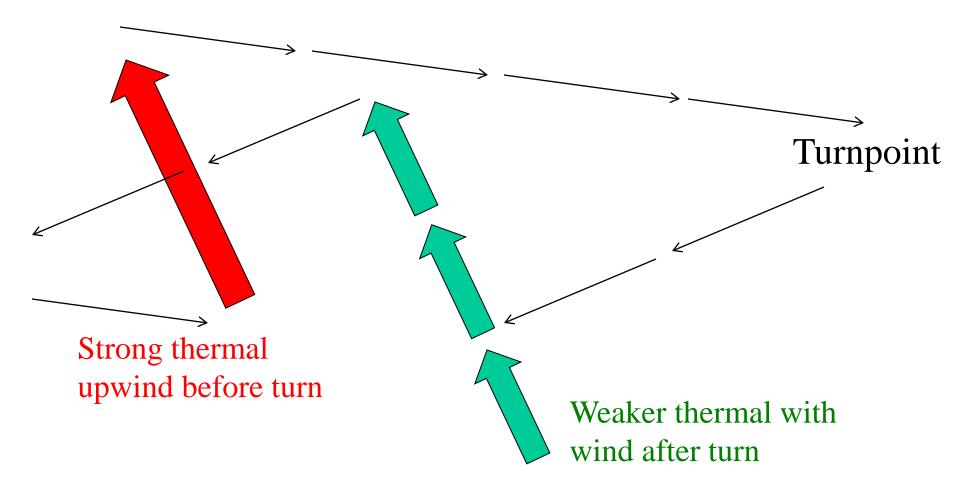
Higher:


- •See teammate ahead, good gaggle.
- "Race MacCready" with a group whose expected climb is better than individual one, or whose expected altitude at climb is better.
 Objective: Win, not max expected speed. (Gamble.) SGP!

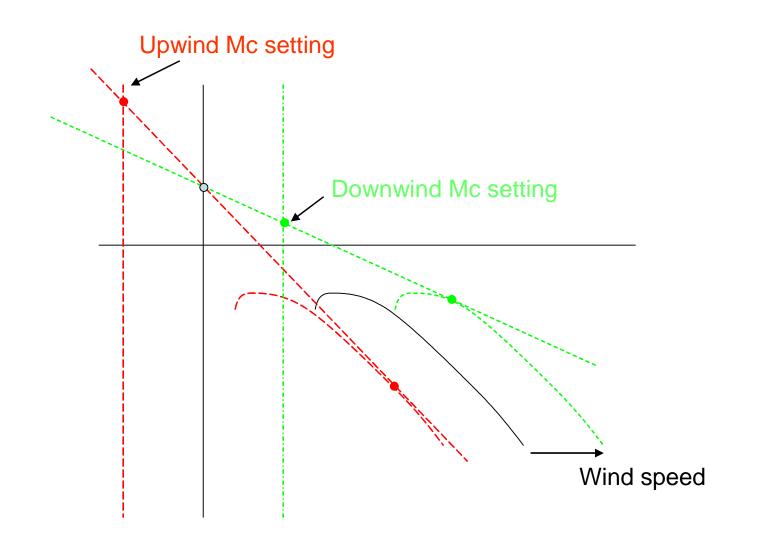
Bottom line: Fashion for long slow glide is giving way to higher speeds in racing – when appropriate


Course deviations – degrees matter not distance

Course deviations – how far to get a better thermal?

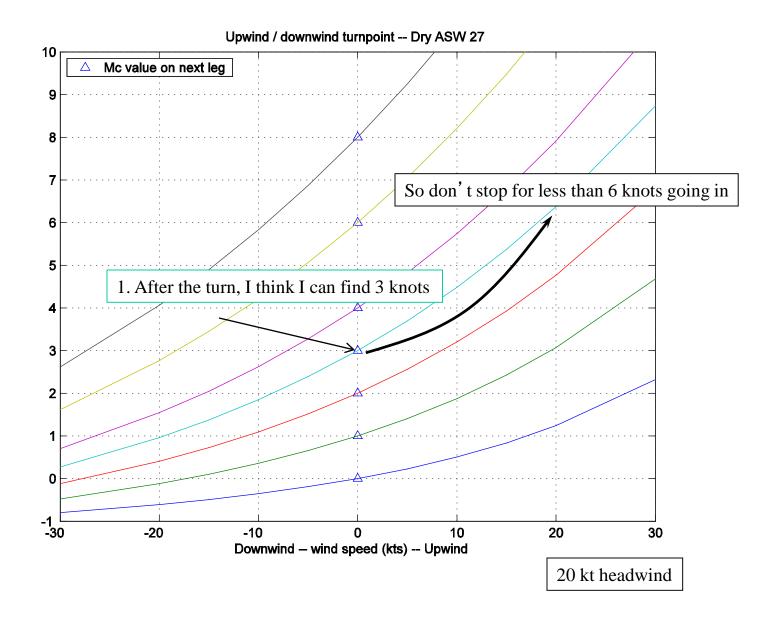


Course deviations – to cruse in lift/avoid sink



Upwind/downwind

X knots upwind = Y knots downwind. Y << X. How much?



MacReady values around a turnpoint with wind How *much* is 2 knots downwind really =, upwind?

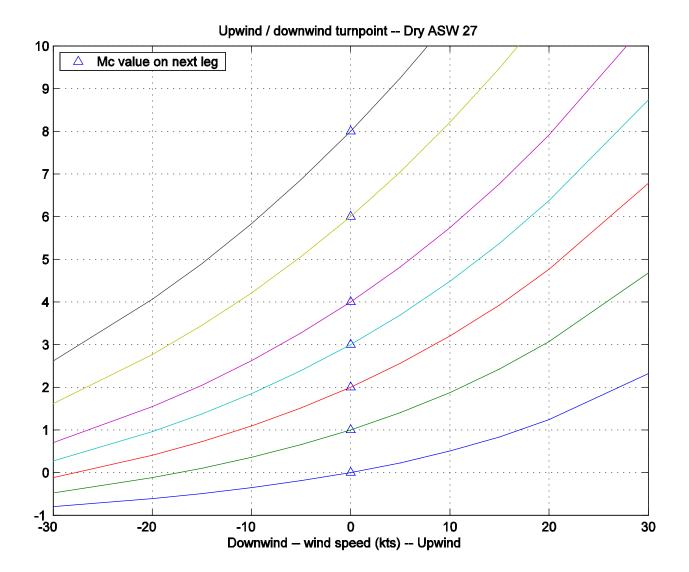
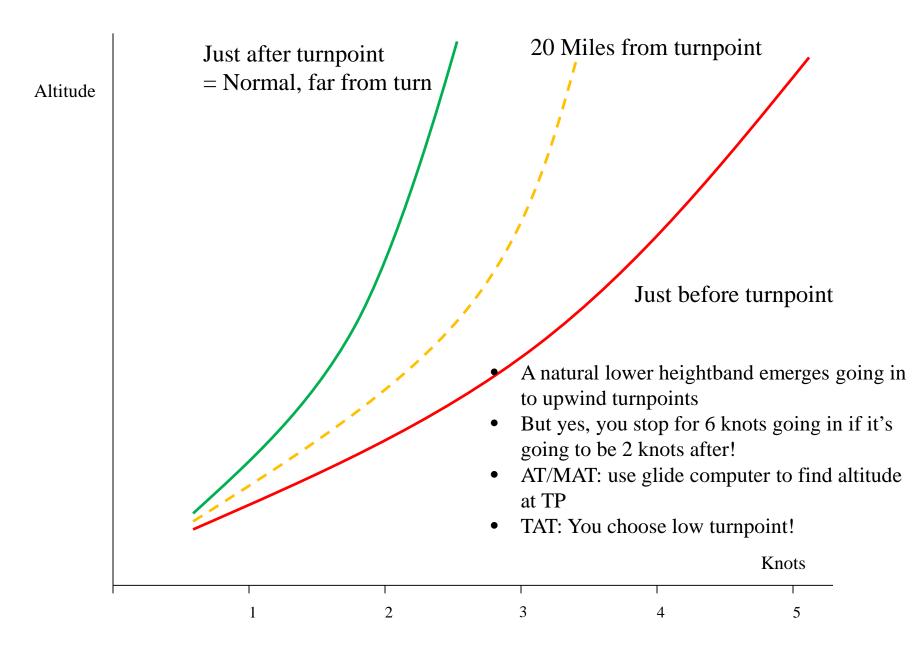
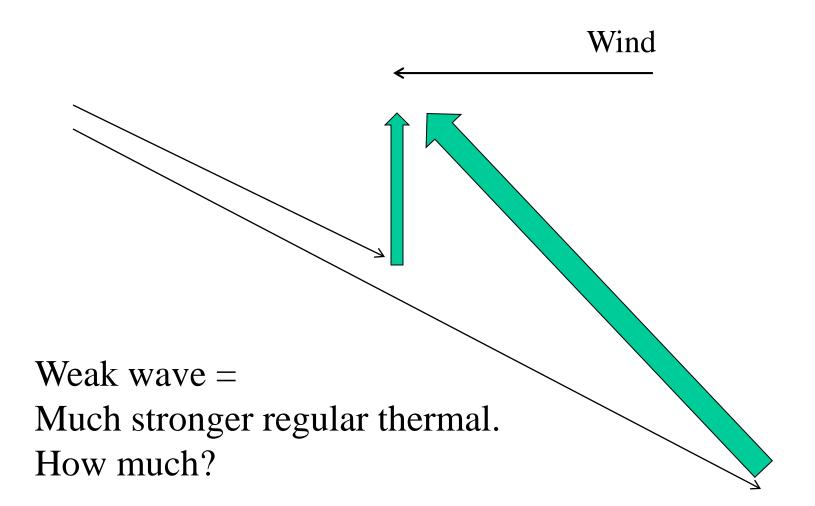
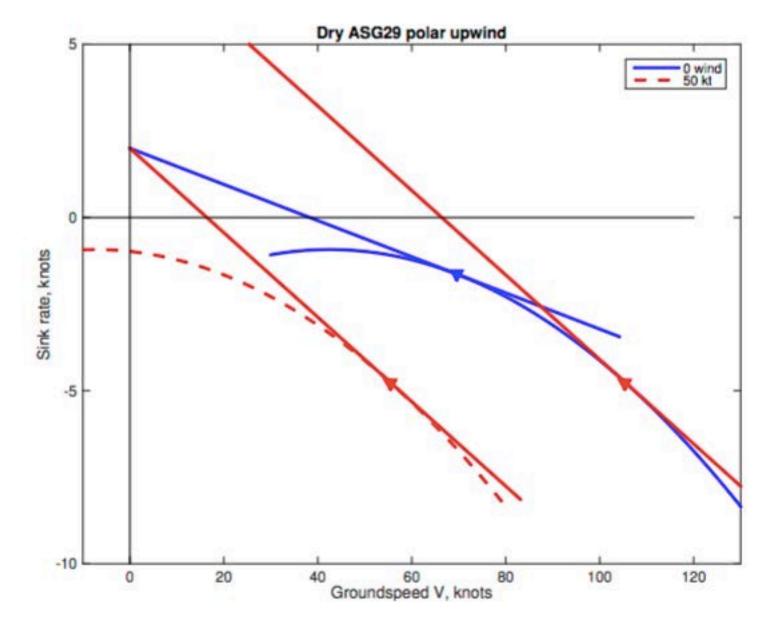


Table	Table of upwind / downwind turnpoint MacCready values.												
	Dry ASW 24												
Use this on the ground at the beginning of the day!													
Wind (kts)													
-30	-20	-15	-10	-5	0	5	10	15	20	30			
-0.8	-0.6	-0.5	-0.4	-0.2	-0.0	0.3	0.6	1.0	1.5	2.8			
-0.6	-0.2	0.0	0.3	0.6	1.0	1.5	2.0	2.7	3.4	5.2			
-0.3	0.3	0.6	1.0	1.5	2.0	2.6	3.4	4.2	5.1	7.4			
0.1	0.8	1.2	1.7	2.3	3.0	3.8	4.6	5.6	6.7	9.3			
0.5	1.3	1.9	2.5	3.2	4.0	4.9	5.9	7.0	8.3	11.2			
1.3	2.5	3.3	4.1	5.0	6.0	7.1	8.4	9.7	11.2	14.6			
2.3	3.8	4.7	5.7	6.8	8.0	9.3	10.8	12.3	14.0	17.9			


- Use glide computer to see altitude at turnpoint.
- If at that altitude and weather you'd take 3 knot thermals,
 - Upwind 15 knots don't stop for less than 5.6 and glide that fast
 - Downwind 15 knots take anything more than 1.2 knots and fly that slow.
- You will likely end up high at downwind, low at upwind turnpoints.


Set glide solution to turnpoint. Consider Mc (altitude) at turnpoint. AAT: You choose turnpoint!


An Upwind Turnpoint

MacCready in wave (yes)

MacCready in Wave. Headwind is like a slower glider

Table 1: Speeds to fly and Mc settings to fly upwind to wave lift

Upwind Speed to fly										
	Dry		Wet							
Wind speed					Wind speed					
Lift	0	20	40	60	0	20	40	60		
2.0	69	79	95	118	88	97	111	130		
4.0	83	95	111	133	104	115	130	149		
6.0	95	107	125	146	117	130	146	165		
	Upwind Mc setting									
	Dry		Wet							
Wind speed						Wind	speed			
Lift	0	20	40	60	0	20	40	60		
2.0	2.0	3.4	6.1	10.7	2.0	3.2	5.1	8.1		
4.0	4.0	6.0	9.3	14.6	4.0	5.6	8.0	11.6		
6.0	6.0	8.5	12.4	18.1	6.0	8.0	10.9	14.8		

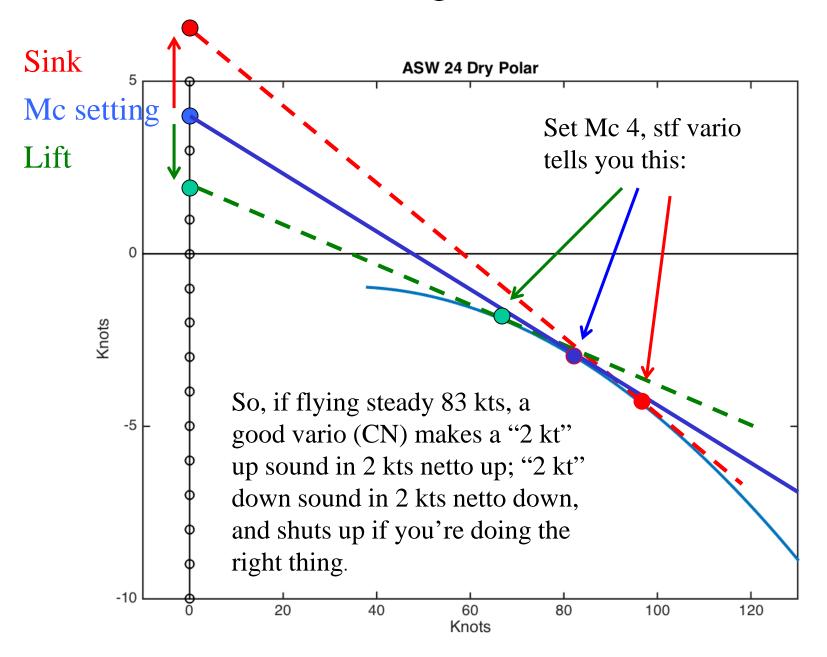
Crosswind Speed to fly									
			Dry		Wet				
Wind speed						Wind speed			
	Lift	0	20	40	60	0	20	40	60
	2.0	69	72	79	94	88	90	96	106
	4.0	83	85	93	106	104	106	111	122
	6.0	95	97	104	116	117	119	125	135

Crosswind Mc Setting

	Dry		Wet					
	ind sp	eed	Wind speed					
Lift	0	20	40	60	0	20	40	60
2.0	2.0	2.3	3.4	5.8	2.0	2.2	2.9	4.4
4.0	4.0	4.4	5.7	8.2	4.0	4.3	5.1	6.7
6.0	6.0	6.4	7.8	10.4	6.0	6.3	7.2	8.9

Bottom line

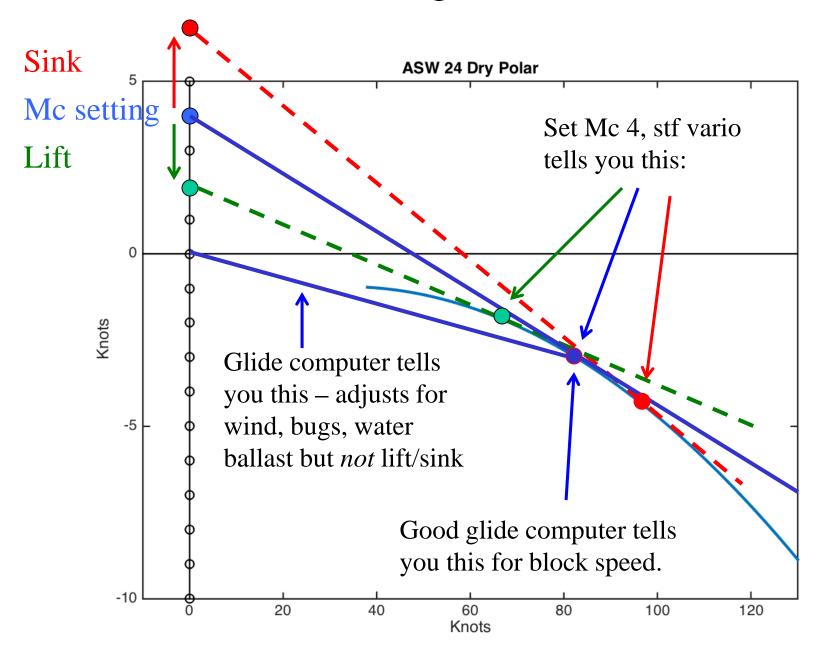
- At any moment, weather, wind, altitude, etc. determine MacCready value if I were x feet higher I could arrive 1 minute sooner.
- This governs all soaring decisions time vs. altitude.
- Take any (smooth, bottom to top) lift greater than Mc Value (and Mc Value is weakest lift you'd take).
- Leave any lift below Mc Value. Now.
- Do not fly slower than Mc Value.
- Mc value determines size of course deviations.
- Slowly adapt speed to persistent predictable lift and sink
- Choose it right! And change fast as weather changes.
- Use substantially higher Mc values in your glide computer for safety -4 - 6 minimum.
- Climb better! Locate, enter faster, be quicker to leave bad lift.
- Climb better!

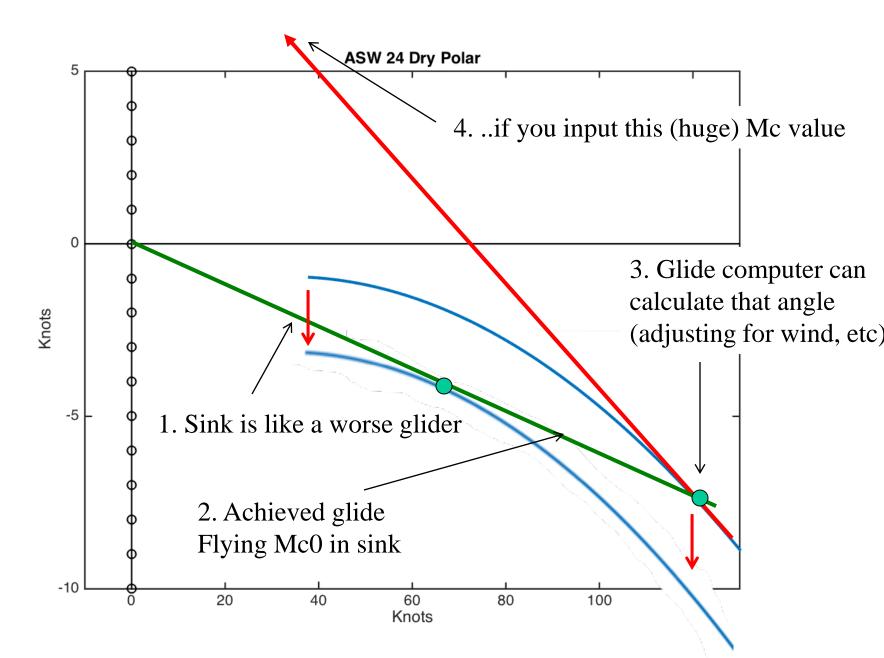

More

MacCready and other theory of how to fly contests

- MacCready Theory in Wave. November 2016. How to apply MacCready theory in wave. Fly faster. Matlab program
- Safety glides. (Later published in Soaring) February 27 2012 How to use your glide computer for safety glides. Don't use Mc 0 and expect to get home. The square root rule, and more. Slightly expanded version with metric units: (pdf) or (doc) (August 2012)
- Deviations Part I Sept 2011. (Later published in Soaring) How far off course should you go to chase that juicy cloud? The MacCready theory of course deviations. (Part I is the case with no wind. Part II with wind on the way.) This version includes the algebra appendix for masochists.
- Just a little Faster Please Jan 2007. Condensed and rewrote the article for publication in Germany. This version is better, except the numbers are all m/s and km. Slovenian translation. German version.
- Just a Little Faster Please July 2000. Article for Soaring Magazine on applying new MacCready theory.
- Flying Faster Part 2
- Upwind and downwind The theory of upwind and downwind turnpoints. Oct 2006 (Also a "contest corner"
- "MacCready Theory with Uncertain Lift and Limited Altitude" Technical Soaring 23 (3) (July 1999) 88-96. This version cleans up some typos that crept into the published version. Acrobat 3.0 pdf file Programs contains matlab and gauss programs for making the calculations.
- NOTE: Robert Almgren wrote this very nice and mathematically much better version of the theory. Even if you don't like equations, skip to Figure 4.1 and 4.2 which are full of insights.
- "The start time game in competition soaring" Technical Soaring 22 (2) (April 1998) 56-64. This article analyzes when to start early, when to start late, when a big gaggle will form, and so on. Acrobat 3.0 pdf file.

Google "John cochrane soaring" or http://faculty.chicagobooth.edu/john.Cochrane/soaring/index.htm


Understanding the instruments


Practical dolphin flying – Instruments (Warning: opinions vary)

- Vario: A fast well compensated speed-to-fly audio is essential. Don't follow push pull, use it to listen to air, push pull slowly.
- Netto is acceptable, but leads to milking bad lift, not flying fast enough. Use stf audio as netto instead.
- Regular vario: Next to impossible.
- Examples: 1) Mc 3 + 1 kt sink, 85kts. Vario = -4.5. Find 1 kt lift? Vario = -2.5. Slow down? 2) 1 kt sink. Same annoying tone for Mc 1, 4; water/none; flying fast/slow/right.
- My vario in cruise:
 - Audio: Fast STF, no deadband (what's the air doing?)
 - Needle: Relative (how fast would I climb if I stopped now?)
 - Averager: slow netto (used rarely)
- In climb:
 - Audio: Fast regular. Needle slower (rarely used)
 - 20 sec average, bottom to top average (important)

Understanding the instruments

Using Mc for safety glides

Using Mc for safety glides

Dry ASW 24								
Mc	Glid	е	D/L ·	D/L - Avg Speed-				
kts)	(kts)	L/D	ft/mi	(mp	h) (kph)		
0	47	42	125	0	0			
1	58	39	134	27	44			
2	68	35	152	39	63			
3	76	30	173	48	77			
4	83	27	195	54	87			
<mark>5</mark> ∧	90	24 🔥	216	60	96			
6	97	22	237	65	104			
7	102	20	258	69	111			
8	108	19	278	73	117			
	1							

To Calculate 24:1 / 216'/mi safety glide (adjusted for wind), input *Mc* 5 to glide computer. For French Alps 20:1, *Mc* 7.

Effect of airmass sink on glide – max glide; flying Mc 0									
Sink	Glide	0	D/L	Mc	Vario				
(kts)	(kts)	L/D	ft/m	i	(kts)				
	·	 4 C	 1 2 F						
0.0	47	42	125	0.0	1.1				
0.5	53	30	177	3.2	1.8				
1.0	58	∱24	225	5.4	2.5				
1.5	63	20	268	7.5	3.2				
2.0	68	17	308	9.6	4.0				
3.0	76	14	382	13.7	5.5				
4.0	83	12	448	17.7	7.1				
5.0	90	10	509	21.7	8.7				

Steady 1 knot sink, flown optimally (58 knots) at Mc 0, gives you a 24:1 glide! Same as Mc 5 in still air!

Using Mc, glide computer, for safety glides

•Decouple glide computer, speed director.

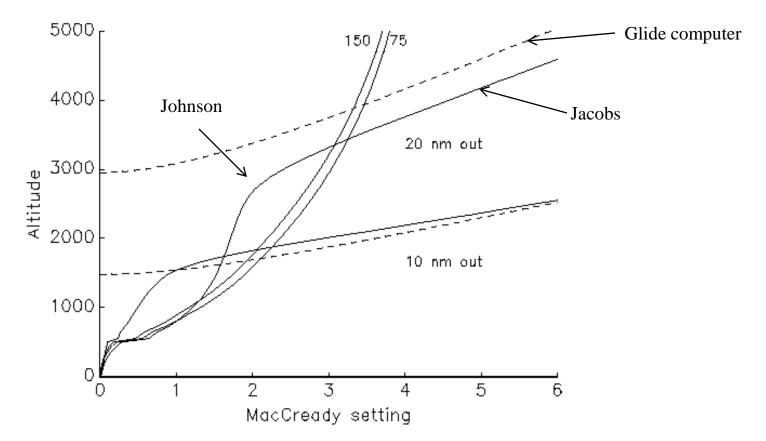
•Use much higher Mc for safety considerations than speed.

•Speed: average thermals ahead. Safety in lower Mc values

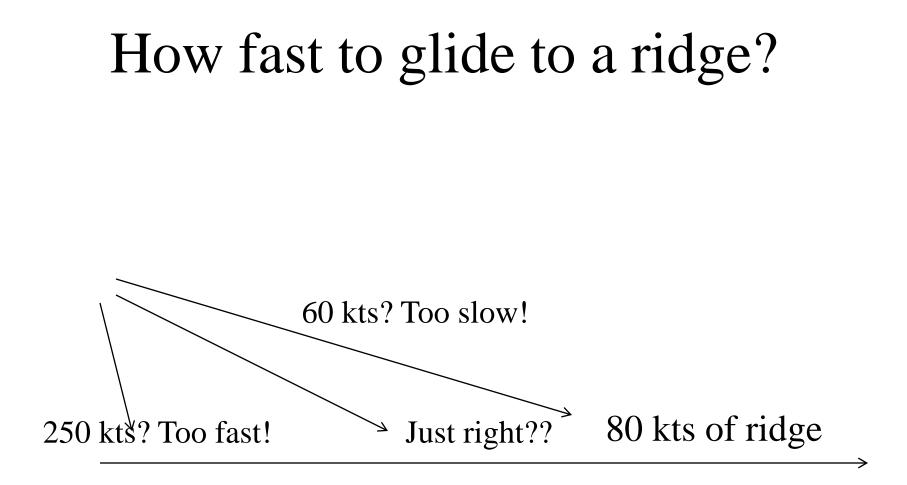
- •Glides: worst case sink ahead. Safety in higher Mc values
- •Good weather is more dangerous! No lift = no sink.

•Rules of thumb:

- •Mc 3, 30:1: Contests, over safe fields.
- •Mc 4-5: 25:1 Everyday flying, safe but inconvenient options.
- •Mc 6-7: 20:1 Bad options or wave etc. persistent sink.
- •More: your life depends on it, and wave etc. sink around.


•Fancy version: Sink doesn't last forever, so longer glide angles are safer. Thus, combine glide angle + arrival height. Further: Less glide, more height. Closer: Steeper glide, less margin.

•Williams summertime special case. No lift or sink in the valley on summer days (only), so Mc 1 + 1000'. This is a special case, don't use it elsewhere!


Final glides

•Jacobs: start low, bump up.

•Johnson: stay high, 10 extra points not worth a landout catastrophe

- Start like Jacobs, finish like Johnson
- Depends very much on lift down low and fields in the last few miles
- Take heart ye chickens: Taking strong lift and finishing fast works!

Answer: Find Mc Setting that produces an average speed of 80 knots. Fly that Mc setting. (Huge)

MacCready Math

- Notation: T_g = time to glide 1 mile. T_c time to climb. V_g = glide speed. V_a = average speed. S(V_g) = sink rate. h = height. M = climb rate (Mc setting).
- ▶ Why is V_a where it is on the graph?

$$\frac{1}{V_a} = T_g + T_c = \frac{1}{V_g} + \frac{h}{M} = \frac{1}{V_g} + \frac{T_g S}{M} = \frac{1}{V_g} + \frac{S}{V_g M} = \frac{1}{V_g} \left(1 + \frac{S}{M}\right)$$
$$\frac{V_g}{V_a} = \frac{M + S}{M}$$

McReady speed derivation:

$$\min_{\{V_g\}} \frac{1}{V_a} = T_g + T_c = \frac{1}{V_g} \left(1 + \frac{S(V_g)}{M} \right)$$
$$-\frac{1}{V_g^2} \left(1 + \frac{S(V_g)}{M} \right) + \frac{1}{V_g} \left(\frac{S'(V_g)}{M} \right) = 0$$
$$\frac{1}{V_g} \left(1 + \frac{S(V_g)}{M} \right) = \left(\frac{S'(V_g)}{M} \right)$$
$$M + S(V_g) = V_g S'(V_g)$$