Soaring Weather Forecasting

PASCO Safety Seminars November 2006

Dan Gudgel Meteorologist/Towpilot/CFIG

Presentation Points

 Weather Info Sources
 Meteorology Points
 Synoptic Scale Weather Patterns
 Forecast Funnel
 Contact Information

1. Weather Information Sources

Weather Data

Internet (use "search engines")

 Site addresses change frequently
 Customize access list for efficient data retrieval

- Review AC-006, Aviation Weather
- Review AC-45F, Aviation Weather Services

Chapter 16 SOARING WEATHER

Internet Weather Data

- Upper Air Temperature Soundings
- Observed and Forecast Weather Charts
- Model Forecasts
- Satellite Imagery

Education / ExplanationsSoaring Category Info

National Weather Service

http://www.weather.gov
NWS National Homepage
Select area of interest ('clickable' map)
All Western Region NWS Offices listed

Numerous weather links
Current weather
Forecast models
Satellite images
Aviation Wx Center
Other sites

O ATMOSPHE

noaa

ARTMENT OF CO

Forecast Systems Laboratory

<http://www-frd.fsl.noaa.gov/mab/soundings>

• Forecast Upper Air Temperature Soundings • 40Km grid resolution • Out to 16 Hours • Spot forecasts (By airport) Plot sounding from MAPS/RUC Analyses/Forecasts

Unisys Weather

<http://weather.unisys.com/index.html>

- Upper Air Temperature Soundings
- Constant Pressure Charts
- Model Forecast Charts
- Education / Explanations

NAM Model Forecast

GFSx 10 day Forecast

US Radar Summary

National Center for Atmospheric Research (NCAR) [et al.]

<http://www.rap.ucar.edu/weather/>
Upper Air Data (Temp/RH/Wind Info)
Other weather data

> The National Center for Atmospheric Research Operated by the University Carporation for Americheric Research

NCAR

RAP Real-Time Weather Data

Home / RAP

PE Weather Home Satellite Radar Surface Upper-Air Forecast

Satellite View cloud images as seen from space by geostationary satellites, more >

Surface See the surface weather conditions reported nearest you. more >

Forecast Become your own weather forecaster using these guidance tools. more >

Radar Wew reflectivity and velocity images from NEXRAD doppler radars, more >

Upper-Air See winds, temperature, and moisture well above the earth's surface. more >

Help Pages Review these pages for help interpreting certain graphics or to see what's new. more >

- And in case of the local division of the loc
- Severe & Tropical
- Storm Prediction Only - Storm Watches - Thunderstorm Outlook
- Thunderstorm Gutlook

DCN Weather Cntr CoCoRaHS anow/rain CO discussions

- Tromul Prediction Colo
- CSU humicane forecasts
- MESO Tropical Atlantic Ho

Aviation

Help for th

2. Meteorology Points

- Atmospheric Soundings
- Great Basin Applications
 - Convection concepts
- Climate Aspects
- Local Influences

Sounding Basics

 Small day-to-day changes can make big differences in a soaring day's characteristics Spot observation versus need to assess task area air mass, including discontinuity lines Elko 👝 Altitude noted by Pressure -850 mb 🗹 5000 Feet (MSL) o Reno 4973' MSL -700 mb 🗹 10,000 Feet -500 mb 🗹 18,000 Feet

Sounding Sources

University of Utah Upper Air Link
 <u>http://www.met.utah.edu/jhorel/html/wx/skewt.html</u>

 Unisys Weather Upper Air Link
 <u>http://weather.unisys.com/upper_air/skew/index.html</u>

Lapse Rates

Dry and Moist Adiabatic

Temperature Inversions

Surface-Based and Aloft

Profiles

- A mixed atmosphere is near-adiabatic (left)
- Subsidence from high pressure "caps" convection but high enough to facilitate soaring over terrain (right)

Surface-Based Inversion Erosion with Time

Cloud Base / Moisture Layers

 T / DP Closure

 Possible Cloud Layers

 Moist Adiabatic Lapse Rate

The Drying Process

De-Stabilizing Process

Colder Air Advection above, and/or Warm Air Advection below will de-stabilize

Basin Thunderstorm / Microbursts

- Develop Adjacent cells
- Classic short duration
- 60Kt+ Sink Rates
- Regardless of cell size
- Wind shifts

Mojave Desert Downburst

Courtesy of Caracole Soaring, California City, CA

Microburst Sounding

Classic Supercell Thunderstorm

National Weather Service www.weather.gov

Climate and Other Influences

- Climate and Terrain Considerations
 Modifying Influences and Contributions
- Thunderstorm Indices

The Drying Process

Mojave Desert Shearlines

Mountain Wave

Water Vapor Satellite Imagery

- Moist and dry air boundaries
- Active convection often along interface
- Determine Raob representativeness of task area?

3. Synoptic-Scale Weather Patterns

Weather Types Favorable to Long Distance Soaring

Type #1:Four-Corner HighType #2:Strong RidgeType #3:Low Center, Trough,
Short-wave ProximityType #4:Building Ridge Aloft

Type #1: The Four-Corner High

- High pressure centered aloft near the Four Corner area of the Southwest U.S.
- Most recognized, "Classic" long flight pattern
- Good low level heating de-stabilizes the air mass
 - -Light surface wind
 - -Lower layer warm air advection
- Monsoon moisture tap ... therefore usually not a long-lived pattern
- Good soaring ... but days get truncated with afternoon TSTMs... often widespread

Type #1: 6/18/88

ASI to Keeler and return

6/18/88 Raobs

- WMC 94/50
 RNO 90/58
 TPH 83/52
- LAS 98/78

Type #2: Strong Ridge

- Light wind
- Low level heating
- Thermal trough well to the west of task area
- Impulse aloft over ridge axis; or,
- Ridge axis aloft east of the task area

Type #2: 8/9/96

Long-lived, extraordinary pattern Numerous 1000Km flights Over a 4-day period

8/9/96

Type #3: Low Center, Trough, or Short Wave Proximity

- Ridge axis to the east; Trough axis proximity
- De-stabilizing by cold air advection aloft
- But light wind and/or split in the jet aloft
- Thermal trough closer to NV; but...
- Low level Zephyr washout delayed
- Still able to heat lower levels
- Prevalent pattern for long distance soaring!

Flight of 350 miles

7/7/88 Raobs

WMC 84/54
RNO 84/49
TPH 90/56
LAS 103/77

Type #3(a): Proximity of Low Pressure Center

Low off Southern California coast provides cooler air aloft upstream to destabilize

Elevated heat source influence contributions

Type #3(a): 6/19/93

1000Km flights from Truckee And Minden area

6/19/93 Raobs

WMC 86/47
RNO 88/57
TPH 86/54
LAS 94/72

Type #4: Building Ridge Aloft

2 Examples / Next 4 Slides

Temperature trend upward
 Surface temps climbing faster than aloft
 Subsidence not strong
 Large diurnal temperature spread in transition
 Light wind aloft
 Height gradient small
 Suppression of westerly washout

Type #4: 6/13/88

500 Mile Flight

6/13/88 Raobs

WMC 81/42 RNO 81/27 (!!!) TPH 78/M LAS 95/70

4. Weather Forecasting

MRF 500MB 24HR HGT/VORT FCST VALID 00Z 11-JUL-2000

- Forecast Funnel
- Soaring Indices
- Automated Soaring Forecasts
 Dr. Jack and BLIPMAP
 Other Automated Forecasts
 NUVS IEDS (Criddod Doto)
- NWS IFPS (Gridded Data)

MRF 500MB 48HR HGT/VORT FCST VALID 00Z 12-JUL-2000

A Glider Pilot's Forecast Funnel

MRF 500MB 24HR HGT/VORT FCST VALID 00Z 11-JUL-2000

A Process of Soaring Forecast Refinement

- Site Climate
- Outlook Forecasts
- Extended and Zone Forecasts (2-7 Day)
- Persistence
- Flight Day

Soaring Indices (#3)

Great Basin

Vertical Totals [IT(deg C) 850 mb to 500 mb]

- Upper 20s average to good
- 30 to 34 very good
- 35+ excellent (too unstable many times)

Instability Indices(#1)

Great Basin

Uses Vertical Totals and 2 fixed reference levels
T(C) + 850 dew point(C) - 700 dew point depression(C)
5+ = some cumulus possibilities
Thunderstorms increase in the 10-15 range

Instability Indices (#2)

Great Basin

Lifted Index (LI) and Showalter Index (SI)

- •Lower layer moisture influences on the convection process / thunderstorm indicator
- > 10 stable (weak convection)
- < -4 too unstable (severe weather)

Thermal Lift Indices

- Thermal Index (Williams/Higgins)
- Maximum Lift (Lindsay/Lacy)
- Soaring Support (Aldrich/Marsh)
- Soaring Index (Armstrong-Hill)

Thermal Fig. 5. The soaring index is computed for the maximum thermal altitude of 15,000 ft and difference of 13° C (LNEC (8° C) minus LXEC (-5° C). In the following formula:

Soaring index =
$$3\left(\frac{1.5 \times 10^4}{10^2} + 1.3 \times 10^2\right) = 840$$

Traditional Soaring Forecasts

- Persistence
- Nowcasting
 - Soundings
 - Satellite
 - Analysis
- Algorithm Use

Great Basin Avg. Delta Temps July Rec Max, Max, Min, Rec Mins

Digital Database

Graphical Display of **Requested Weather** Parameter(s)

NWS Reno, NV

ORGANIZATION

Use the form below to select forecast options a

1. Select desired forecast display style...

Display Format (with map displayed).

NEWS

Digital Forecast Products HOME

Current Hazards Watches/Warnings Flash Flood Potenti Storm Reports National Outlooks urrent Conditions Observations Remote Data Radar Imagery Satellite Imagery River & Lakes AHP **Road Conditions** onecasts Local Forecasts **Recreation Forecas Tabular Forecasts** Discussion Aviation **Fire Weather** Hydrology Searing Experimental **Prototype Digital** Forecasts National Digital Forecast Database dims. Climate Public Information

Lightning Done

Internet Explorer 5.0 or greater (no map displayed) 2. Select desired forecast duration... Number of days: C1 day C2 day @3 day Forecast interval in hours: C 1 hour C 3 hours 3. Select desired forecast location... You may select a city Select City or, select a latitude and longitude 1 Integrates It, in g. 47.485 Lon: or click a location on the map C Zoom (for more detail, select Zoom, then click on map **Redding** Susanville Weather Glossary Weather Safety NOAA Wx Radio

Wew We	Wenkly View			Loop	
over the table below	w to c	tange t	te fon	ecast in	
Teler	1241		+12498		
MaxMin Temperature	High				
Probability of Precip	12 br. probability				
Weather	Tam	10am	1 pm	4pm	
Temperature	7.00	10.am	1.pm	4pm	
Dewpoint	7.am	10.0	3.041	49-11	
Wind Speed & Direction	7am	104M	1pm	4pm	
Sky Cover	Yam	1040	1 pm	apm	
Amount of Precip.	QPF		QPF.		
Snow Amount	Arent		Anone		
Ned Image	14		H		

National

Maps

Radar

Air Quality

Finers

Satelite

Climate

Wantings & 1 Graphical

Porecasts

Forecasts

Soaring Weather Forecasting

Dan Gudgel Meteorologist/Towpilot/CFIG

134 South Olive Street Lemoore, CA 93245 (w)559-584-3752 ext.223 (h)559-924-7134

<d.gudgel@sbcglobal.net>

