Glider Batteries

Battery technology, care and feeding

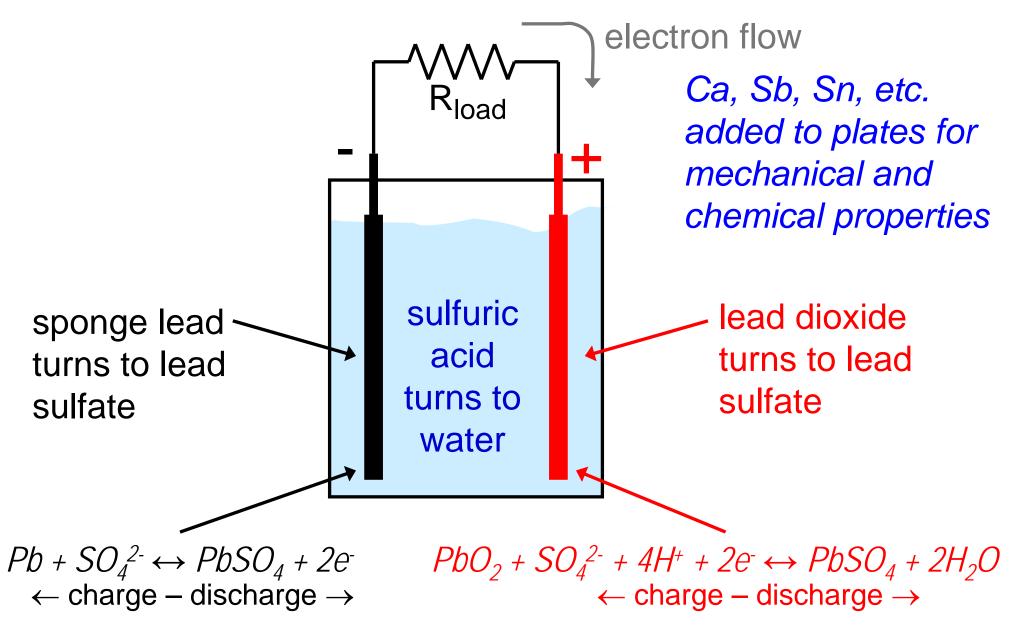
Darryl Ramm (6DX)

Outline

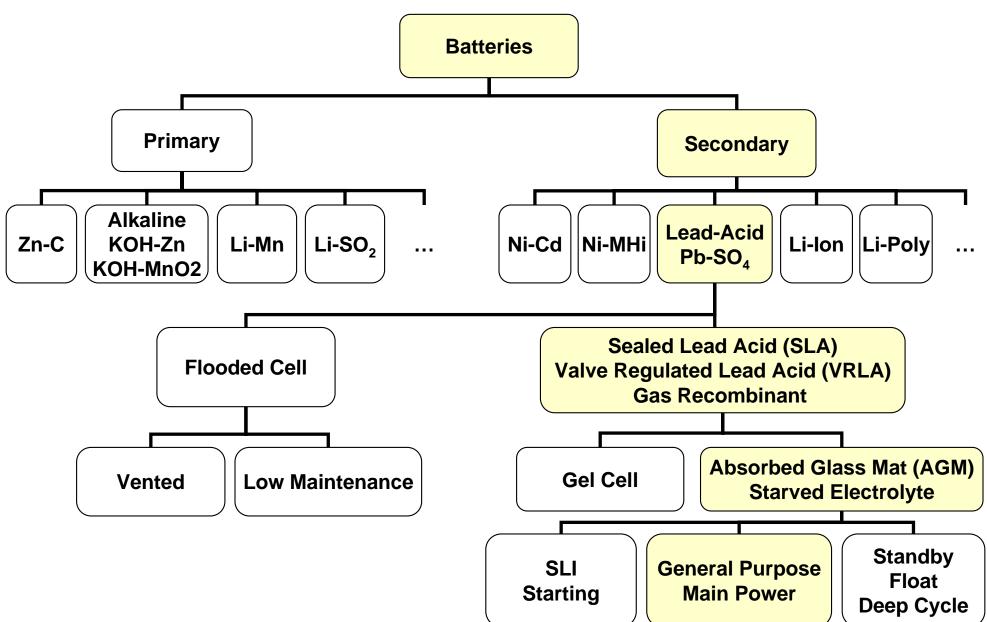
- Battery technology
- Understanding specifications
- Low temperatures
- Glider power requirements
- Battery care
- Battery chargers
- Handouts battery data sheets

Getting Started

Ohms law: $V = I \times R$ Power: $P = I \times V$ $= I^2 \times R$ $= V^2 / R$


Measurement	Units
Voltage, V, v, emf, e, ε	volt, V
Current, I, i	amp, ampere, A
Resistance, R	ohm, Ω
Power, P	watt, W
Battery Capacity, C	Ah, A.h Amp.hr
State of Charge, SOC	%

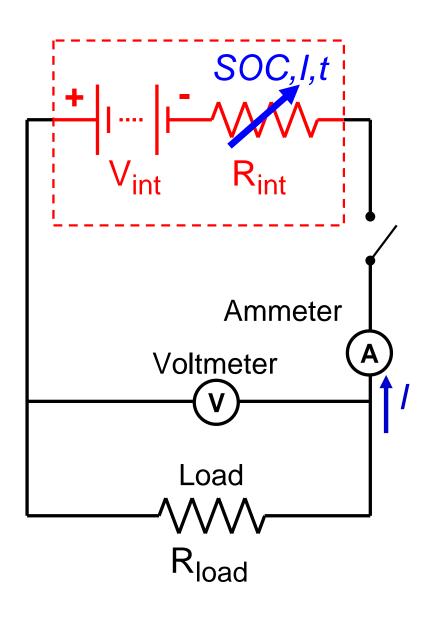
Prefix	Fraction	Decimal	Scientific
micro	millionth	0.000,001	10 ⁻⁶
milli	thousandth	0.001	10 ⁻³
kilo	thousands	1,000	10 ³


State of charge:

SOC = capacity remaining / total capacity (%)

Lead Acid Battery Chemistry

Battery Technology


Sealed Batteries

- Sealed Lead Acid (SLA)
- Valve Regulated Lead Acid (VRLA)
 –Gas regenerative
- Gel Cell or Absorbed Glass Matt (AGM)
- Robust won't spill
- Better discharge & cold crank than flooded
- 1-3% per month self discharge (Pb-Ca) –vs. 1% per day for flooded!
- Lower charge rate than flooded cell
- Up to 3 x cost of flooded

AGM Batteries

- Absorbed Glass Matt
- Mechanically strong
- Robust won't spill
- Good discharge & cold crank
- 1-3% per month self discharge
 ~1% per day for flooded!
- High capacity
- Low internal resistance
- Low self discharge
- Need low charge rate
- Charge volts ~ flooded

Simple Battery Model

- Internal resistance (R_{int})
 - Solid metal conductivity
 - Electrolyte conductivity
 - Plate surface/electrolyte contact resistance
- Terminal voltage drop

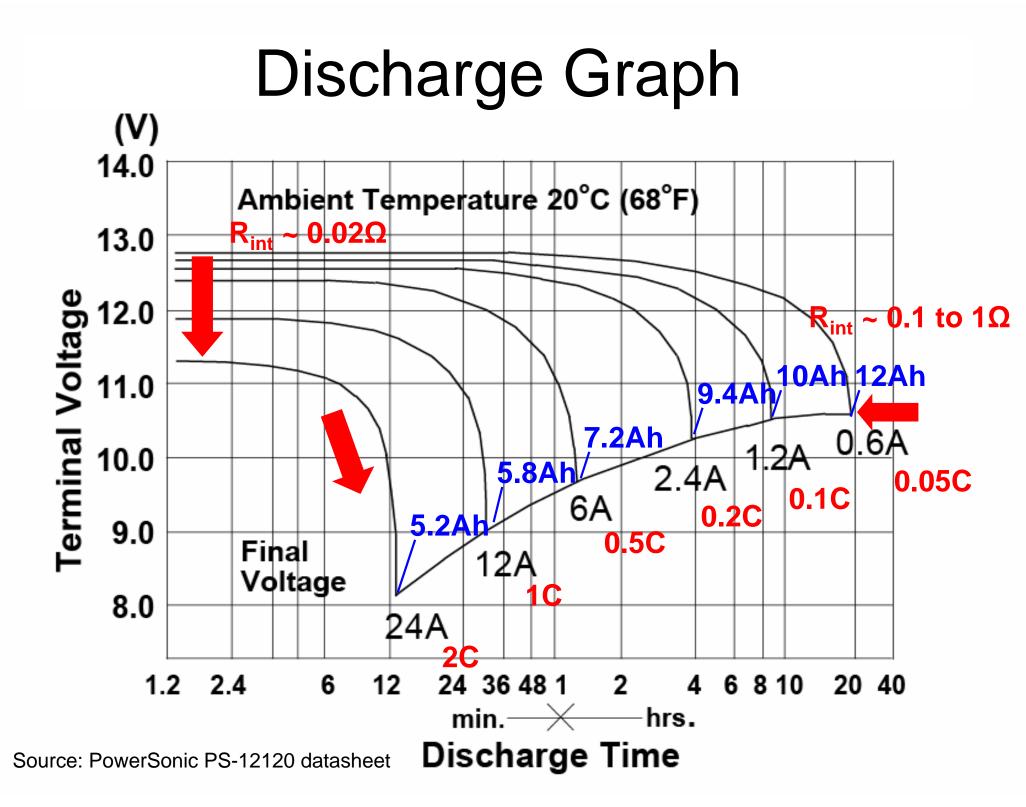
$$-V = V_{int} - I \times R_{int}$$

$$-\Delta P = I^2 \times R_{int} = \Delta V \times I$$

- Increases during discharge
- Affected by temperature, current, chemistry, construction, age/abuse
- R_{int} is measure of health

Amp Hours

Battery capacity


-Abbreviated as 'C', units Amp hours (Ah)

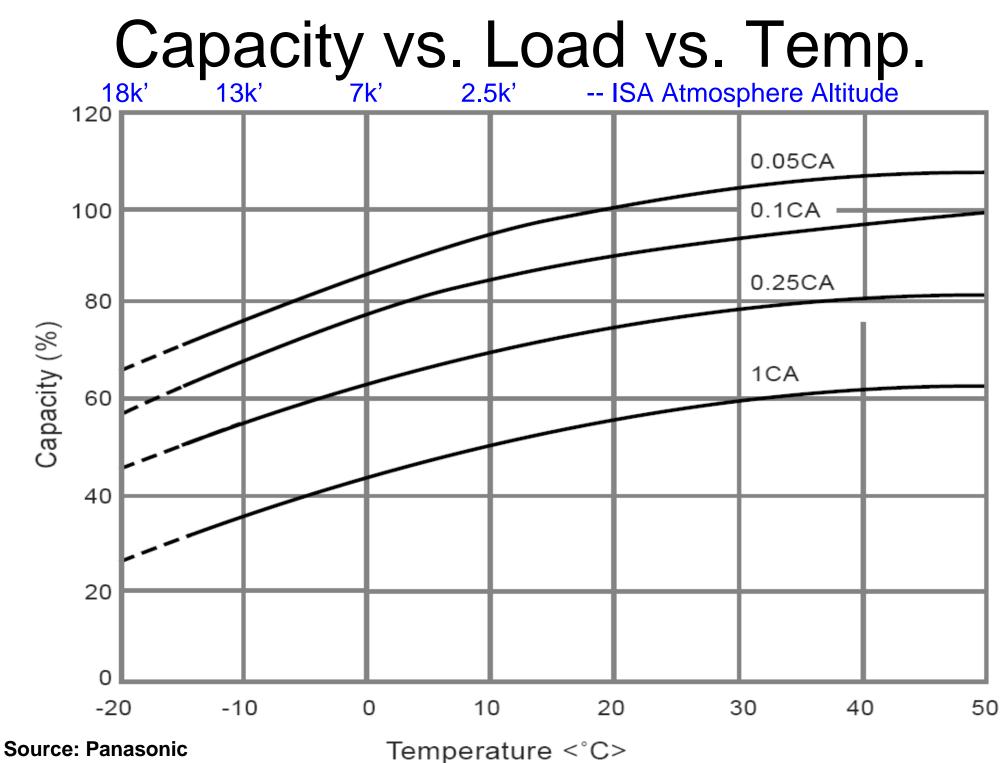
- C = I x time (Ah)
 - Standard is to measure over 20 hour discharge
 Discharge current = 0.05 x C amps for 20 hours
- $C \neq I x \text{ time (Ah)}$

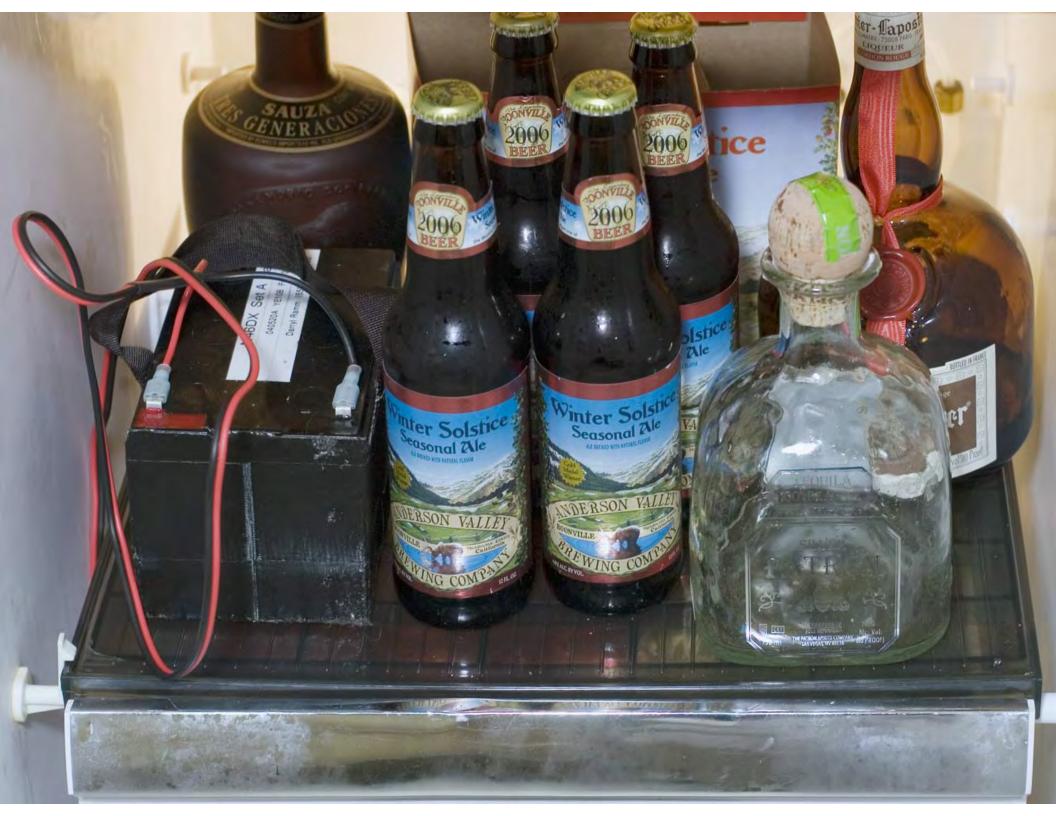
-20 hour C spec is not C amps for one hour

Battery Data Sheets

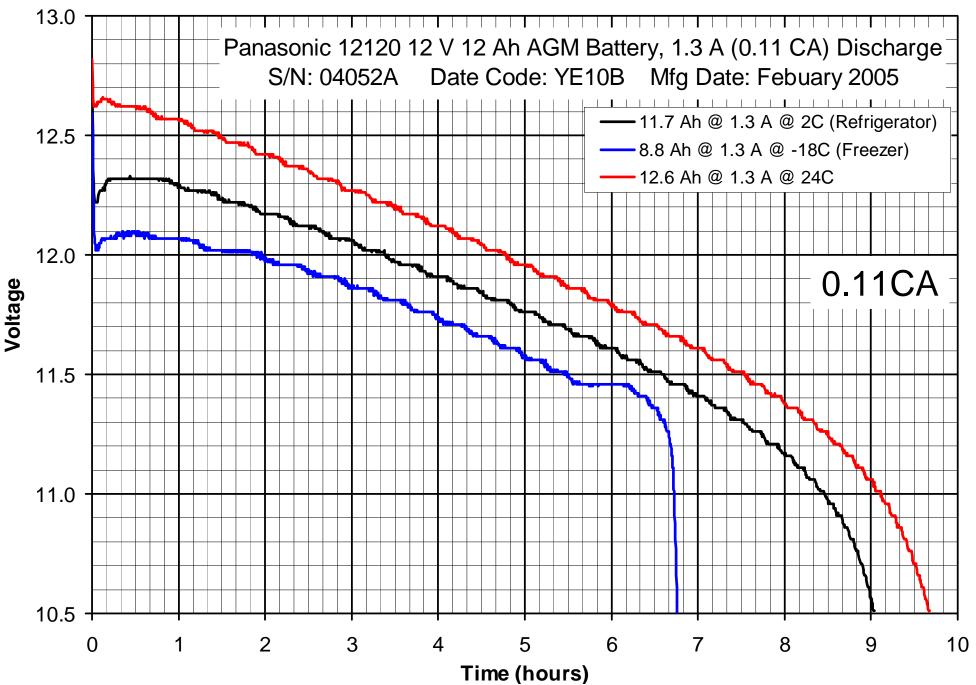
- Lots of interesting stuff...
- Self discharge vs. time vs. temp
- Cycle life vs. discharge depth
- Discharge voltage vs. time vs. current
- Discharge time vs. current vs. temperature
- State of charge vs. open circuit voltage

Discharge Graph

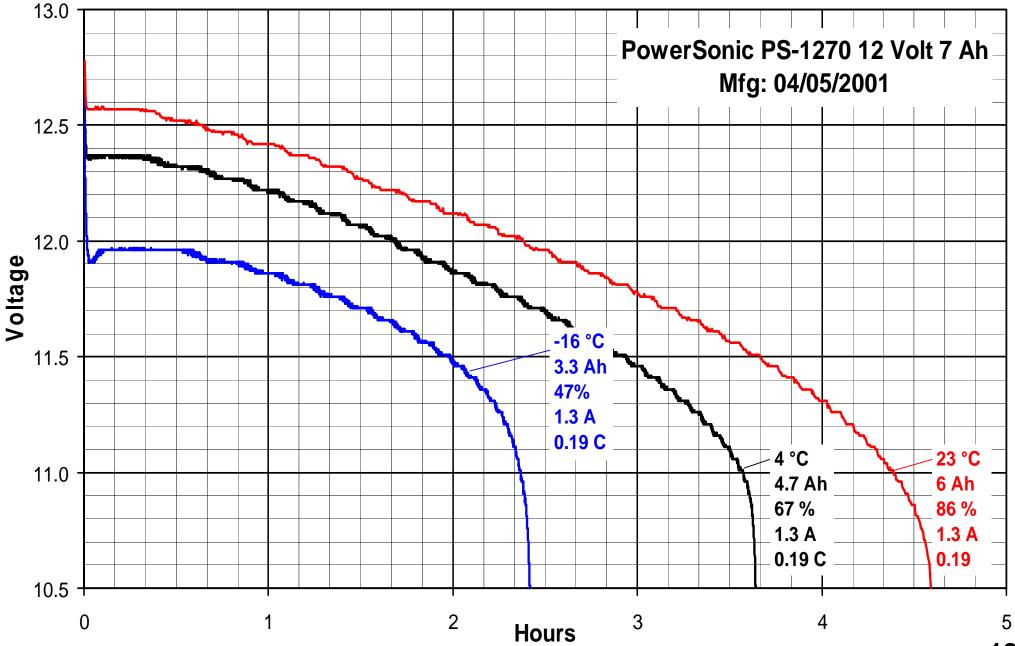

- Constant current discharge
 - -Constant resistance would be close
- Graph shows a lot
 - -Volts vs. SOC during at particular current
 - -Increasing R_{int} as discharges
 - -Increasing R_{int} as current increases
 - -Cut off V changes with current (due to R_{int})
 - –Need to know curve to use for SOC vs. V_{LOAD}
- Missing temperature dependence
- Really want linear not log time axis

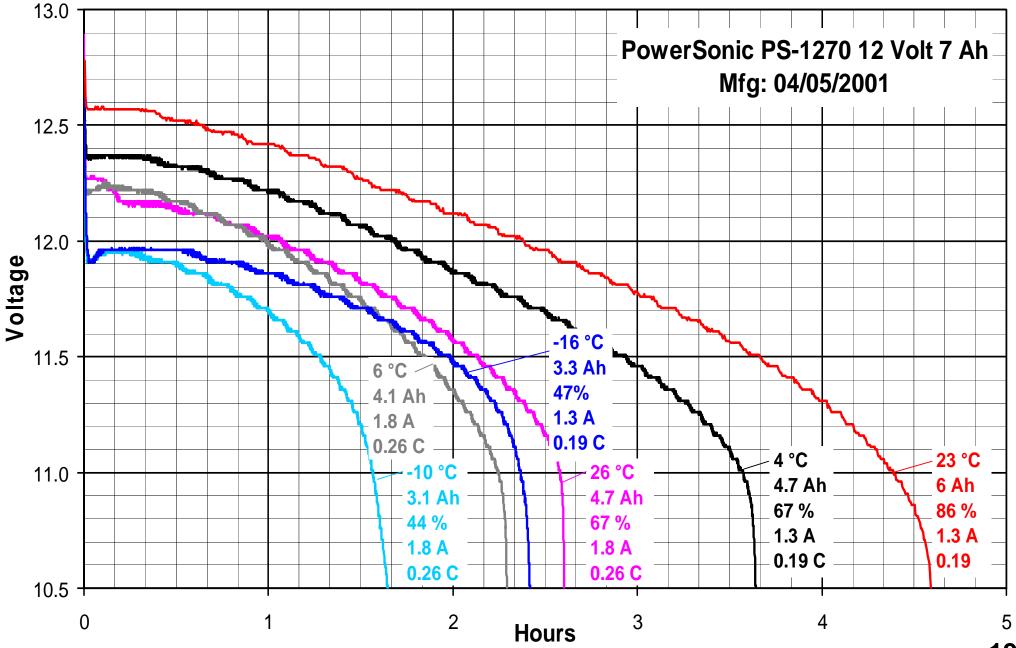

Calculating Battery Run Time

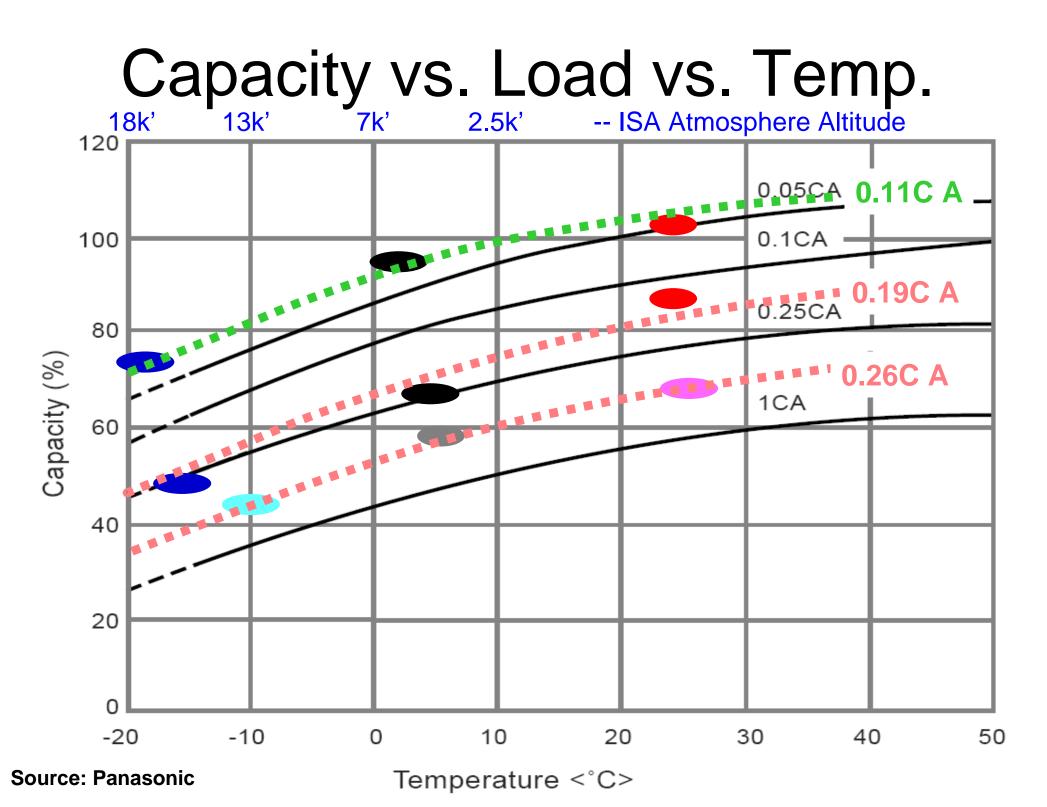
- 1. Find battery C (Ah) near glider current
- 2. Divide C (Ah) by glider current
- 3. Derate 20% for battery aging
- 4. Derate for low temperature (more soon)
- For example at 1.9 A load
 - 1. From graph interpolate C ~ 9.6 Ah
 - 2. At 1.9 A, run time ~ 9.6/1.9 = 5.0 h
 - 3. Derate 20%, run time ~ 4.0 h (20 °C)
- Incorrect naive calculation
 - 12 Ah / 1.9 A = 6.3 h, Derated ~ 5.0 h


Low Temperatures

- What is battery temperature?
- As temperature decreases
 - -Electrolyte conductivity decreases
 - -Chemical potential decreases (minor effect)
 - -Electrolyte will eventually freeze
- Rule of thumb: capacity halves 25 to -25 °C
- Cold wave flights
 - -Solar panels (~ 0.5 to 1.5 A peak)
 - -Insulate batteries
 - 1" R7 foam = few watt heat leak
 - Self heating = fraction to a few watt
 - -Heaters, exotic batteries, ...




12 Ah AGM Battery



Older 7 Ah AGM battery

Older 7 Ah AGM battery

Battery Sizing

- Load sizing current draw
 - -From equipment specs or measurements
 - -Transponders hard to measure
 - -Don't forget PDAs and other toys
- Load sizing time
 - -Maximum and typical flight duration
- Select battery to account for battery effects -Current, temperature, age
- How much redundancy do you want? –What if a battery dies, forget to charge, etc.

DG-303 Power Budget

Component	Amps	Duty	Comments	
Becker AR-4201 VHF Radio	0.09	100%		
Standby	0.07	89%	Measured 0.07 A full squelch	
Transmit	1.30	1%	Measured 1.3 A	
Receive	0.11	10%	Measured 0.11 A max volume	
Transponder and Encoder	0.49	100%		
Becker 4401 175 W Transponder	0.40		Manufacturer specs.	
ACK A-30 Altitude Encoder	0.09		From E. Greenwell, more if colde	
Cambridge 302 Computer	0.24	100%		
Audio tone on loud	0.31	50%	Measured 0.31 A max audio tone	
Audio tone off	0.16	50%	Measured 0.16 A no audio tone	
Cambridge 303 Display	0.01	100%	From specs 10mA at 12 V	
iPAQ hx-4700 PDA - charged	0.39	200%		
CF GPS + Backlight full bright	0.26	40%	Measured	
CF GPS + Backlight off	0.18	160%	Measured	
Goddard SPS-1	0.01	100%		
Total amps	1.2	А	•	
Flight time	8.0	h	*	
Total Ah load	9.8	Ah	*	
20% derate for battery aging	11.7 Ah		# Batteries Comments	
7 Ah battery, 0.21 C at 0 °C	18.1	Ah	2.6 Derated to 65%	
7 Ah battery, 0.21 C at -20 °C	23.5	Ah	3.4 Derated to 50%	
12 Ah battery, 0.12 C at 0 °C	15.7	Ah	1.3 Derated to 75%	
12 Ah battery, 0.12 C at -20 °C	21.4	Ah	1.8 Derated to 55%	

Transponders

- Load = Transponder + Encoder (heater)
- Take care with measurements
 - Transponder needs to be interrogated
 - Encoder heater
 - e.g. ACK A-30 0.42 A for ~minute then ~0.06 A

Transponders						
Manufacturer	Model	Amps	Street Price			
Becker	4401-2-175 Mode C 175 W	0.40	\$1,800			
	4401-2-250 Mode C 250 W	0.50	\$2,000			
	BXP-6401-2 Mode S 150 W	0.43	\$2,500			
	BXP-6401-1 Mode S 250 W	0.43	\$3,900			
Microair	T2000 FSL Mode C 200W	0.15 to 0.20	\$1,600			
Altitude Encoders						
Manufacturer	Model	~Amps -20 °C	street price			
Ameri-King	AK-350	0.24	\$160			
ACK Technologies	A-30	0.09	\$180			
Trans-Cal	SSD-120-30A	0.10 (0.4 Eric?)	\$250			

23

PDAs (and Garmin 496, ...)

- HP iPAQ hx-4700 example
 - Standard battery: 1.8 Ah at 3.7 V (0.5 Ah at 12 V)
 Full charging ~ 2 hours ~0.4 A to 0.6 A at 12 V
 - Extended battery: 3.6 Ah at 3.7 V (1.1 Ah at 12 V)
 Full charging ~ 4 hours ~0.4 A to 0.6 A at 12 V
- Keep PDAs/GPS batteries charged!
- PDA/GPS turned off can drain glider battery
- Backlights ~ 0.1 A or more

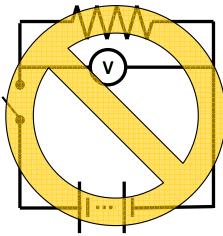
HP iPAQ hx-4700 –12 V Equivalent Currents						
	PDA Off	PDA On				
			Backlight Off		Backlight On	
GPS CF Card		Off	On	Off	On	
Charged	0.09 A	0.14 A	0.18 A	0.22 A	0.26 A	
Charging	0.44 A	0.49 A	0.53 A	0.57 A	0.61 A	

DG-303 Power Budget – Flat PDAs

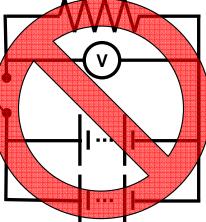
Component	Amps	Duty	Comments	
Becker AR-4201 VHF Radio	0.09	100%		
Standby	0.07	89%	Measured 0.07 A full squelch	
Transmit	1.30	1%	Measured 1.3 A	
Receive	0.11	10%	Measured 0.11 A max volume	;
Transponder and Encoder	0.49	100%		
Becker 4401 175 W Transponder	0.40		Manufacturer specs.	
ACK A-30 Altitude Encoder	0.09		From E. Greenwell, more if co	older
Cambridge 302 Computer	0.24	100%		
Audio tone on loud	0.31	50%	Measured 0.31 A max audio to	one
Audio tone off	0.16	50%	Measured 0.16 A no audio tor	ne
Cambridge 303 Display	0.01 100%		From specs 10mA at 12 V	
iPAQ hx-4700 PDA - charged	0.99	200%		
CF GPS + Backlight full bright	0.44	40%	Measured	
CF GPS + Backlight off	0.51	160%	Measured	
Goddard SPS-1	0.01	100%		
Total amps	1.8	А		
Flight time	8.0	h	4 Hrs. to charge PD	
Total Ah load	12.2 Ah		1	
20% derate for battery aging	14.6 Ah		# Batteries Comments	
7 Ah battery, 0.21 C at 0 °C	22.5	Ah	3.2 Derated to 65%	
7 Ah battery, 0.21 C at -20 °C	29.2	Ah	4.2 Derated to 50%	
12 Ah battery, 0.12 C at 0 °C	19.5	Ah	1.6 Derated to 75%	
12 Ah battery, 0.12 C at -20 °C	26.6	Ah	2.2 Derated to 55%	

Turn & Bank/Attitude Indicator

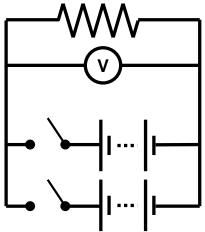
- Spin up times (~minutes for mechanical gyros)
- Cold LCD displays and cold gyro spin up be issues
- TruTrak Pictorial Turn & Bank -0.15 A
- Mid-Continent
 - -Turn Coordinator 3 1/8" 14 V 0.28A
 - -4200, 2" AI 14 V, 1.4 A start, 0.51A run
 - -4300, 3 1/8" AI 14 V 1.4 A start, 0.6 A run
- Sporty's Backup Artificial Horizon – 14 V, 1.0 A start, 1.2 A running
- MGL Stratomaster Maxi-Single Attitude Indicator -8-18V 0.14 A / 0.22 A Display+IMU (backlight off / on)
- Dynon 10A EFIS
 14 V 0.9 A max, 0.6 A typical

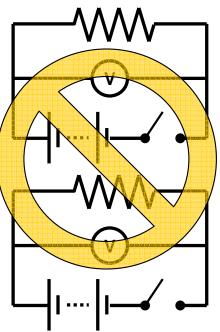

Glider Power Distribution

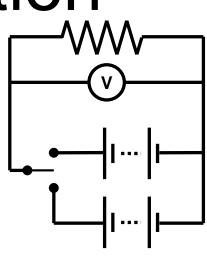
- What batteries will or can be made to fit?
- How much rewiring is needed?
- Must use master switch
- Redundancy what if:
 - -Battery open circuits, cell shorts,...
 - -You forget to charge a battery?
- Flexibility is good
- Simplicity is good club pilot proof
- Need a voltmeter across load

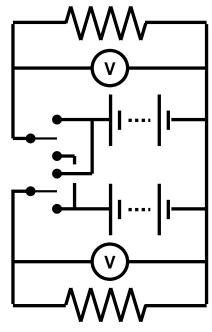

-Accurate digital voltmeter

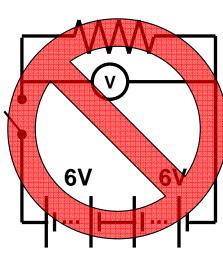
-Built into some avionics/instruments


Glider Power Distribution


No Redundancy.


Less redundancy than single battery.

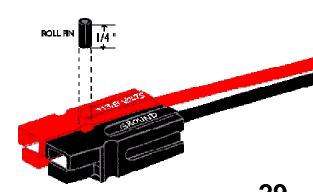

Can avoid glitches switching batteries.


Not flexible. Weak redundancy.

Simple. Idiot proof.

Flexible. Too Complex? **28**

No redundancy. Bad idea all round.


Less redundancy. Bad idea all round.

Circuit Breakers & Connectors

• Circuit breaker on the battery -e.g. Klixon 5A, 7277-2-5, ~\$20

- Anderson PowerPole connectors
 - -Standard shells, 15, 30, 45 & 75 A crimp blades
 - -www.andersonpower.com
 - -Standardized orientation ham radio
 - -www.races.net/powerpole.phtml
 - -Williams Soaring
 - -www.powerwerx.com
 - -www.westmountainradio.com

Battery Life

- Batteries don't die they are killed!
- Batteries are consumables

-Few years life at most

- Relatively low cost
- Purchase from a brand name manufacturer
- Purchase where there is a good turnover
- Check date / date codes
- Should come with charge > 11 V
- Record usage start date on battery

Battery Health Problems

- Sulfation
 - Deep discharge
 - Being left at low SOC
 - High temperatures
- Positive grid corrosion, flaking, dendrite growth
 - -Over voltage, over charging, wrong or faulty charger
 - High temperatures
- Loss of electrolyte
 - -Over voltage, over charging, wrong or faulty charger
 - Decompression of cell, faulty valve, mishandling
 - -High temperatures esp. during charge
- Cell poisoning
 - Impurities cause poisoning over time

Date Codes

- Date either plain marked or a code
 Most manufactures are using plain dates
- Month is indicated by a single letter

-'A' for January, etc.

- -'I' is skilled to stop confusion with numeral one
- Year is indicated by a single digit
- E.g. D3 means April 2003
- Written month first, or year first

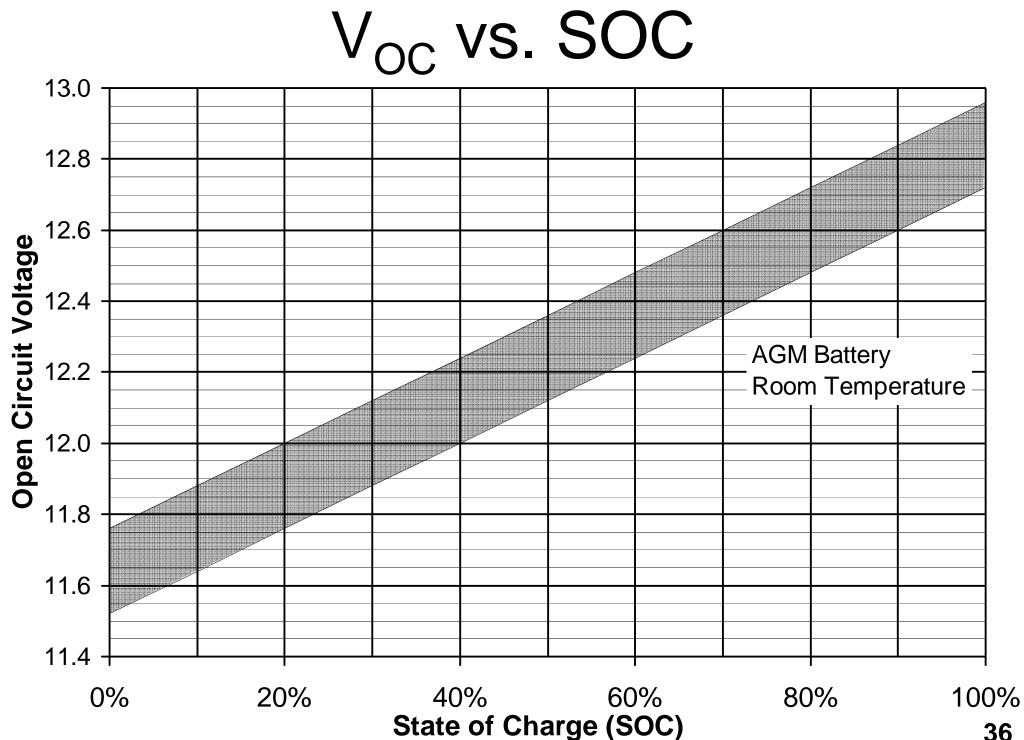
-E.g. D3 or 3D

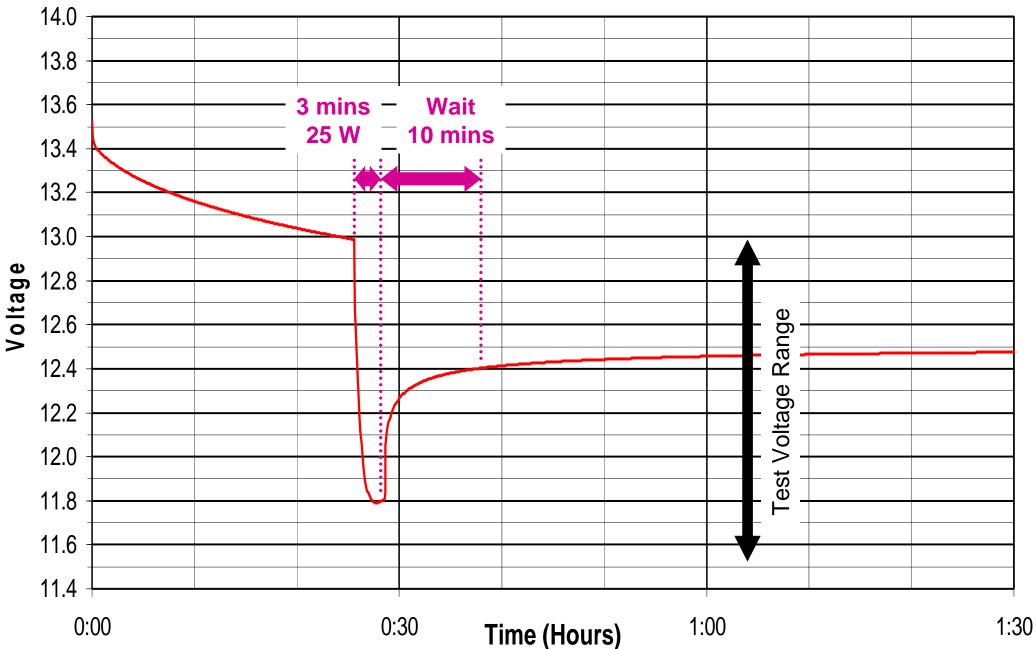
Battery Tests

- Open Circuit Voltage (V_{OC})
 - -Can find gross faults
 - -Can give very approximate SOC
 - -Does not measure capacity
 - -Does not measure internal resistance
- Discharge test
 - -Accurately measures battery capacity
 - -Can estimate time remaining in flight
 - Heavy discharge looks for early weakness
- Other testers and analyzers

RC Model Power Meters

- RC Electronics –Watt's Up? ~\$55
- Medusa Research
 –Power Analyzer–II ~\$60
 - -Power Analyzer Pro ~\$90
- AstroFlight


-Super Whattmeter ~\$45



Open Circuit Voltage - V_{OC}

- 1. Remove surface charge
 - Wait up to 12 hours, or...
 - ~25 W bulb for ~ 3 minutes, wait ~10 minutes
- 2. Measure V_{OC}
 - Digital multimeter or power meter
 - Use chart to calculate SOC
- Test measures SOC only
 - Faulty battery can have 100% SOC but much less capacity than specifications

Surface Charge

Discharge Test – Constant R

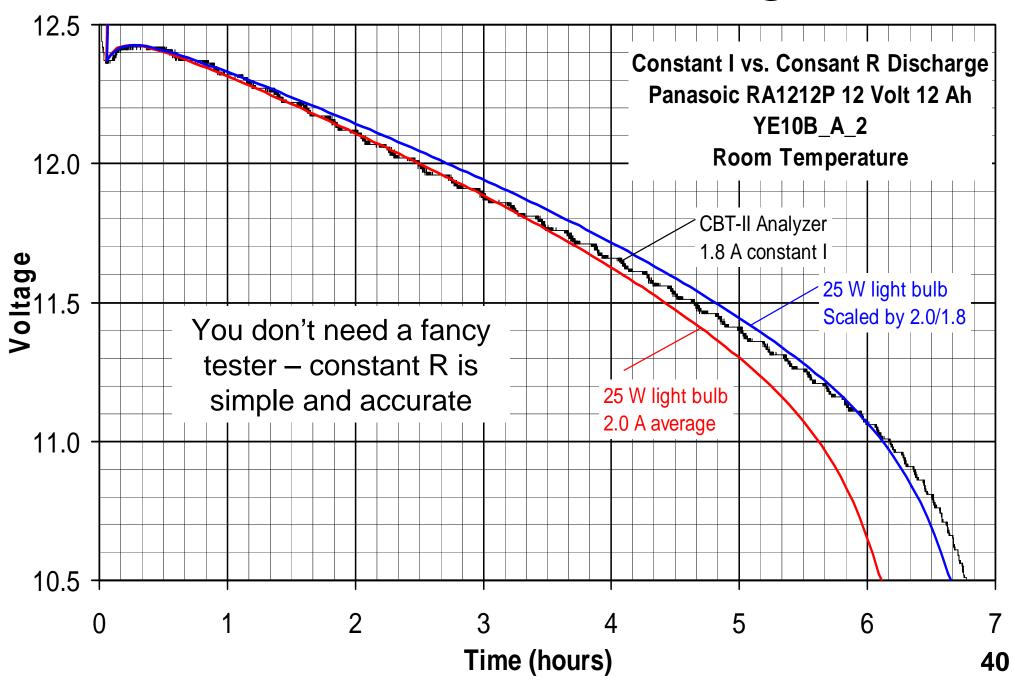
- Calculate or measure glider current
- Test close to this current (< ±50%)
 - -Light bulb or power resistor
 - -Combine, series or parallel if needed
 - -Check actual current
- Cut-off voltage from spec sheet
- Measure V during discharge
- Calculate run time at glider battery load
- Also do test at high current (~1 to 0.5 C A)
 –Need headlight or big resistor, different cut-off

Example Test – Constant R

Light bulb simulating 1.3 A load

$$P = I \times V = 1.3 \times 12 = 16 W$$

Use two 25 W tail light bulbs in series


Resistor simulating 1.3 A load

$$R = V / I = 12 / 1.3 = 6.7 \Omega$$

P = 15 W (want several times this rating) Use a 10 Ω , 65 W power resistor

• 50 W car headlight or two in parallel I = P / V = 50 / 12 = 4.2 A per light

Constant R Discharge

Discharge Test – Constant I

- Most accurate discharge test
- Usually done with battery analyzer
 Convenience more important than accuracy
- Suitable for club, FBO, repair station, etc.
- Automated battery analyzer

–West Mountain Radio CBA-II (~\$120) www.westmountainradio.com

-Vencon UBA4 (~\$600)

www.vencon.com

AGM Battery Chargers

- Need lower charge rate than flooded
- Charge voltages may differ from flooded
- Smart chargers are dumb
 - -Do not know battery size, do not adjust
 - -Look for bulk current ~ C/5 to C/10
- Two or three charging steps
 - $-Bulk \rightarrow Absorption \rightarrow Float \text{ or } Bulk \rightarrow Float$
 - -Different names, same thing

Selecting a Charger

- Current in range C/5 to C/10
- Charge time
 - -Bulk+Absorbtion, 90% SOC ~ 1.2 x C / I hours
 - -Float ~ few hours to 100% SOC
- Designed for AGM (flooded may be OK)
- Described as 2 or 3 stage, with "float"
- Status lights float, errors, etc.
- Fault protection

-Reverse battery, short, and over temperature

- Temperature compensation
- Cut off timer (most don't have this)

Chargers

- Some good chargers
 - Xenotronix HPX-30, 2 A, ~\$80
 - Xenotronix HPX-10, 0.8A, ~\$40 (wall wart)
 <u>www.xentronix.com</u> (OEM'ed by PowerSonic)
 - VDC BatteryMINDer Plus, 1.3 A, ~\$50 (wall wart) www.vdcelectronics.com
 - Deltran BatteryTender Plus, 1.25 A ~\$50 (not wall wart)
 - Deltran BatteryTender Jr., 0.75 A ~\$30 (wall wart)
 - www.batterytender.com
- Only charge one battery at a time
- Carry spare fuses for charger
- Provide adequate cooling
- Replace DC connectors with PowerPole

RC Model Chargers

- Better than battery to battery or AC inverter
- Very sophisticated & high performance
 - -Some do not charge lead acid batteries
 - -Make sure you have correct settings
 - -Select charger or program for I ~ C/5 to C/10
- Great Planes Triton
 - -www.greatplanes.com
 - -www.towerhobbies.com
- Graupner Ultramat
 - <u>www.graupner.de</u>
 <u>www.hobby-lobby.com</u>

Solar Panels on Glider

- Beware of over simplistic & optimistic specs
- As assist to battery

-~0.5A to 1.5 A peak currents

- As a battery charger in air and on ground
- Sunlight up to ~1 kW/m² at equator
- Technology
 - -Amorphous silicon panels ~6-10% efficient

-Crystalline silicon panels ~ 30% efficient

Important for cold flights
 ~10% efficiency increase from +20 °C to -20 °C

Solar Charge Controllers

- Not needed on < 5 W panels
- PWM (Pulse Width Modulation) better than shunt – e.g. MorningStar – <u>www.morningstarcorp.com</u>
- MPTT (Maximum Power Point Tracking) best – e.g. Solar Converters – <u>www.solarconverters.com</u>
- Look at self consumption specs
- Hermetic sealed?
- May not charge very flat battery (~< 8 V)
 SunGuard will not, SunKeeper and SunSaver will
- Don't use low voltage disconnect (LVD) in glider

Strobl-Solar Solar Panels

- www.strobl-solar.de
- From glider manufactures or add on kits – Includes charge controller, etc.
- Bonded to fuselage or engine bay door
- Semi-flexible, monocrystalline cells

 Appears 2-4 times the best amorphous cells
- 7.5 W per module - 660 x 108 x 1.3mm
- 2 modules 15 W peak, 0.86 A peak
- 3 modules 22 W peak, 1.2 A peak
- 4 modules 30 W peak, 1.6 A peak
- ~\$1,500-\$3,000 for kit
- CA / NV guess ~ 1-4 Ah/day/module

Summary

- Do an energy budget for your glider
- Look after your batteries
 - -Avoid deep discharge
 - -Never leave a battery flat
 - -Keep batteries cool
 - -Use a smart charger, sized for batteries
- Batteries are consumables
- Test your batteries
 - -VOC test
 - -Discharge test batteries at start of season
 - -For capacity and heavy discharge for health

The End

Lange Antares 20E

- 9,020 ft climb
- 728 ft/min
- 123 nm saw tooth range
- 42 kW (57 hp) motor
- 72 x Saft VL41M Li-Ion
- 2.1"diam x 8.7" length
- 39 Ah at 3.6 V per cell
- ~ 840 Ah 12 V total
- 76 kg = 13% of 600 kg
- ~1,500 cycles, ~11 years
- 8 hour charge

